Wave Attractors in Rotating Fluids: A Paradigm for Ill-Posed Cauchy Problems

Type: Article

Publication Date: 2000-11-13

Citations: 50

DOI: https://doi.org/10.1103/physrevlett.85.4277

Abstract

In the limit of low viscosity, we show that the amplitude of the modes of oscillation of a rotating fluid, namely inertial modes, concentrate along an attractor formed by a periodic orbit of characteristics of the underlying hyperbolic Poincare equation. The dynamics of characteristics is used to elaborate a scenario for the asymptotic behavior of the eigenmodes and eigenspectrum in the physically relevant regime of very low viscosities which are out of reach numerically. This problem offers a canonical ill-posed Cauchy problem which has applications in other fields.

Locations

  • Physical Review Letters - View
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • PubMed - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Inertial waves in a rotating spherical shell: attractors and asymptotic spectrum 2001 M. Rieutord
Bertrand Georgeot
Lorenzo Valdettaro
+ Some stability and instability issues in the dynamics of highly rotating fluids 2022 Gabriele Sbaiz
+ PDF Chat Inertia-gravity waves in geophysical vortices 2024 Jérémie Vidal
Yves Colin de Verdìère
+ Generation of internal waves in a rotating, stratified fluid: Some symmetry properties 1993 V. M. Kharik
+ PDF Chat Continuation and stability of rotating waves in the magnetized spherical Couette system: secondary transitions and multistability 2018 F. García
Frank Stefani
+ PDF Chat Inertia-gravity waves in geophysical vortices 2024 Jérémie Vidal
Yves Colin de Verdìère
+ Dispersive Dynamics of Waves in Euler Systems 2003 Klaus Kirchgässner
+ Propriétés qualitatives de solutions de quelques équations paraboliques semi-linéaires 2010 Lorenzo Brandolese
+ Waves in Hyperbolic Systems 2020 Tommaso Ruggeri
Masaru Sugiyama
+ Waves in Hyperbolic Systems 2015 Tommaso Ruggeri
Masaru Sugiyama
+ Mathematical analysis of inertial waves in rectangular basins with one sloping boundary 2016 S. D. Troitskaya
+ Inertial-like waves in rigidly-rotating odd viscous liquids 2023 E. Kirkinis
Mónica Olvera de la Cruz
+ PDF Chat Nonlinear stability of entropy waves for the Euler equations 2024 Wei Wang
Zhifei Zhang
Wenbin Zhao
+ Attractors. Then and now 2022 Sergey Zelik
+ PDF Chat Evolution of internal cnoidal waves with local defects in a two-layer fluid with rotation 2024 Korsarun Nirunwiroj
Dmitri Tseluiko
К. Р. Хуснутдинова
+ PDF Chat Axisymmetric inertial modes in a spherical shell at low Ekman numbers 2018 M. Rieutord
Lorenzo Valdettaro
+ PDF Chat On the inertial wave activity during spin-down in a rapidly rotating penny shaped cylinder: a reduced model 2020 Ludivine Oruba
A. M. Soward
Emmanuel Dormy
+ Characteristic decompositions and interactions of rarefaction waves of 2-D Euler equations 2010 Jiequan Li
Zhi-Cheng Yang
Yuxi Zheng
+ Attractors. Then and now 2023 Sergey Zelik
+ PDF Chat Completeness of inertial modes of an incompressible inviscid fluid in a corotating ellipsoid 2017 George Backus
M. Rieutord