Uniform and Sobolev extension domains

Type: Article

Publication Date: 1992-01-01

Citations: 16

DOI: https://doi.org/10.1090/s0002-9939-1992-1075947-1

Abstract

We prove that if a domain <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper D subset-of bold upper R Superscript n"> <mml:semantics> <mml:mrow> <mml:mi>D</mml:mi> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">D \subset {{\mathbf {R}}^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is quasiconformally equivalent to a uniform domain, then <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper D"> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding="application/x-tex">D</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is an extension domain for the Sobolev class <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper W Subscript n Superscript 1"> <mml:semantics> <mml:msubsup> <mml:mi>W</mml:mi> <mml:mi>n</mml:mi> <mml:mn>1</mml:mn> </mml:msubsup> <mml:annotation encoding="application/x-tex">W_n^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> if and only if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper D"> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding="application/x-tex">D</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is locally uniform. We provide examples which suggest that this result is best possible. We exhibit a list of equivalent conditions for domains quasiconformally equivalent to uniform domains, one of which characterizes the quasiconformal homeomorphisms between uniform and locally uniform domains.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Sobolev and quasiconformal extension domains 1993 Manouchehr Ghamsari
+ On traces of Sobolev functions on the boundary of extension domains 2009 Markus Biegert
+ PDF Chat Uniform and Sobolev Extension Domains 1992 David A. Herron
Pekka Koskela
+ Superposition operator in Sobolev spaces on domains 2000 Denis A. Labutin
+ PDF Chat Hölder domains and Poincaré domains 1990 Wayne Smith
David A. Stegenga
+ Fractional Sobolev extension and imbedding 2014 Yuan Zhou
+ PDF Chat On Sobolev extension domains in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi mathvariant="bold">R</mml:mi><mml:mi>n</mml:mi></mml:msup></mml:math> 2010 Pavel Shvartsman
+ A remark on Calderón-Zygmund classes and Sobolev spaces 2002 David Swanson
+ PDF Chat Interpolation between Sobolev and between Lipschitz spaces of analytic functions on starshaped domains 1989 Emil J. Straube
+ PDF Chat Quasiconformal and bi-Lipschitz homeomorphisms, uniform domains and the quasihyperbolic metric 1985 Gaven Martin
+ PDF Chat On the uniform convergence of quasiconformal mappings 1973 Bruce Palka
+ Integrability of superharmonic functions, uniform domains, and Hölder domains 1999 Yasuhiro Gotoh
+ PDF Chat Sobolev inequalities for weight spaces and supercontractivity 1976 Jay Rosen
+ PDF Chat Sobolev imbedding theorems in borderline cases 1996 Nicola Fusco
Pierre Lions
Carlo Sbordone
+ PDF Chat Extension of continuous functions into uniform spaces 1986 Salvador Hernández
+ Existence of quasiconformal mappings in a given Hardy space 2023 Ondrěj Bouchala
Pekka Koskela
+ Relatively and inner uniform domains 1998 Jussi Väısälä
+ An extension theorem of holomorphic functions on hyperconvex domains 2019 Seungjae Lee
Yoshikazu Nagata
+ PDF Chat Morrey–Sobolev Extension Domains 2016 Pekka Koskela
Yi Ru‐Ya Zhang
Yuan Zhou
+ PDF Chat Existence domains of holomorphic functions of restricted growth 1987 Marek Jarnicki
Peter Pflug