Boundedness and dimension for weighted average functions

Type: Article

Publication Date: 1970-01-01

Citations: 0

DOI: https://doi.org/10.1090/s0002-9939-1970-0252666-8

Abstract

The paper considers a weighted average property of the type <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="u left-parenthesis x Subscript o Baseline right-parenthesis equals left-parenthesis integral Underscript upper B Endscripts u w d x right-parenthesis slash left-parenthesis integral Underscript upper B Endscripts w d x right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>u</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>o</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mo largeop="false">∫<!-- ∫ --></mml:mo> <mml:mi>B</mml:mi> </mml:msub> </mml:mrow> <mml:mi>u</mml:mi> <mml:mi>w</mml:mi> <mml:mi>d</mml:mi> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mo largeop="false">∫<!-- ∫ --></mml:mo> <mml:mi>B</mml:mi> </mml:msub> </mml:mrow> <mml:mi>w</mml:mi> <mml:mi>d</mml:mi> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">u({x_o}) = ({\smallint _B}uwdx)/({\smallint _B}wdx)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding="application/x-tex">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a ball in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E Superscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>E</mml:mi> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{E^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with center <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="x Subscript o"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>o</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{x_o}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. A lemma constructing such functions is presented from which it follows that if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n equals 1"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">n = 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and the weight function <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="w"> <mml:semantics> <mml:mi>w</mml:mi> <mml:annotation encoding="application/x-tex">w</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is continuously differentiable but is not an eigenfunction of the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="1"> <mml:semantics> <mml:mn>1</mml:mn> <mml:annotation encoding="application/x-tex">1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dimensional Laplace operator, then <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="u"> <mml:semantics> <mml:mi>u</mml:mi> <mml:annotation encoding="application/x-tex">u</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is constant. It is also shown that if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="w"> <mml:semantics> <mml:mi>w</mml:mi> <mml:annotation encoding="application/x-tex">w</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is integrable on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E Superscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>E</mml:mi> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{E^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="u"> <mml:semantics> <mml:mi>u</mml:mi> <mml:annotation encoding="application/x-tex">u</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is bounded above or below, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="u"> <mml:semantics> <mml:mi>u</mml:mi> <mml:annotation encoding="application/x-tex">u</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is constant.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On bounded functions satisfying averaging conditions. II 1976 Rotraut Goubau Cahill
+ PDF Chat Composing functions of bounded 𝜑-variation 1986 J. Ciemnoczołowski
W. Orlicz
+ PDF Chat Weighted 𝐿² approximation of entire functions 1975 Devora Wohlgelernter
+ PDF Chat An upper bound for the sum ∑^{𝑎+𝐻}_{𝑛=𝑎+1}𝑓(𝑛) for a certain class of functions 𝑓 1992 Edward Dobrowolski
Kenneth S. Williams
+ PDF Chat Weighted norm inequalities for general operators on monotone functions 1993 Shanzhong Lai
+ PDF Chat A description of weights satisfying the 𝐴_{∞} condition of Muckenhoupt 1984 S. V. Hruščëv
+ PDF Chat A theorem on weighted 𝐿¹-approximation 1987 Darrell Schmidt
+ 𝐴_{𝑝} weights for nondoubling measures in 𝑅ⁿ and applications 2002 Joan Orobitg
Carlos Pérez
+ PDF Chat Weighted norm inequalities for fractional integrals 1975 Grant V. Welland
+ PDF Chat An integral inequality 1991 J. Ernest Wilkins
+ PDF Chat Where does the 𝐿^{𝑝}-norm of a weighted polynomial live? 1987 H. N. Mhaskar
Edward B. Saff
+ PDF Chat Weighted norm inequalities for homogeneous families of operators 1983 José L. Rubio de Francia
+ PDF Chat On existence and a dominated convergence theorem for weighted 𝑔-summability 1972 Fred M. Wright
M. L. Klasi
+ PDF Chat A weighted weak type inequality for the maximal function 1985 Eric T. Sawyer
+ PDF Chat Weighted inequalities for geometric means 1994 Bohumı́r Opic
Petr Gurka
+ Measure and dimension of sums and products 2021 Kyle Hambrook
Krystal Taylor
+ PDF Chat Weighted inequalities for one-sided maximal functions 1990 F. J. Martín-Reyes
Pedro Ortega Salvador
A. de la Torre
+ PDF Chat A generalization of the arithmetic-geometric means inequality 1976 A. M. Fink
Max Jodeit
+ PDF Chat Fractional integrals on weighted 𝐻^{𝑝} and 𝐿^{𝑝} spaces 1985 Jan-Olov Strömberg
Richard L. Wheeden
+ PDF Chat Laplace convolutions of weighted averages of arithmetical functions 2024 Marco Cantarini
Alessandro Gambini
Alessandro Zaccagnini

Works That Cite This (0)

Action Title Year Authors