Small-time existence for the Navier-Stokes equations with a free surface

Type: Article

Publication Date: 1987-07-01

Citations: 84

DOI: https://doi.org/10.1007/bf01442184

Locations

  • Applied Mathematics & Optimization - View

Similar Works

Action Title Year Authors
+ Small-time existence for the three-dimensional navier-stokes equations for an incompressible fluid with a free surface 1996 Atusi Tani
+ A steady model on Navier–Stokes equations with a free surface 2020 Boling Guo
Yunrui Zheng
+ Inviscid limit for Navier-Stokes equations with free surfaces 2013 Frédéric Rousset
+ PDF Chat The Navier-Stokes equations on a bounded domain 1980 Vladimir Scheffer
+ Solvability of a three-dimensional boundary value problem with a free surface for the stationary Navier-Stokes system 1983 V. A. Solonnikov
+ A Navier-Stokes problem with free boundary 1996 Ionel Sorinel Ciuperca
+ Large Time Behavior of the Navier–Stokes Flow 2016 Lorenzo Brandolese
María E. Schonbek
+ Large Time Behavior of the Navier-Stokes Flow 2018 Lorenzo Brandolese
María E. Schonbek
+ Steady Motion of a Fluid with a Free Surface 1995 Liudas Stupelis
+ Large-Time Behavior of Viscous Surface Waves 1985 J. Thomas Beale
Takaaki Nishida
+ PDF Chat Large time behavior for the 3D Navier-Stokes with Navier boundary conditions 2023 James P. Kelliher
Christophe Lacave
Milton C. Lopes Filho
Helena J. Nussenzveig Lopes
+ Well-posedness of a nonstationary axisymmetric hydrodynamic problem with free surface 2017 В. Н. Белых
+ The Navier-Stokes Problem in Infinite Space 2015 Kulyash Kaliyeva
Asset Kaliyev
+ Analyticity and dynamics of a Navier-Stokes-Keller-Segel system on bounded domains 2017 Vincent R. Martinez
Kun Zhao
+ Various analytical solutions for the incompressible Euler and Navier-Stokes systems with free surface 2018 Marie-Odile Bristeau
Bernard Di Martino
A. Mangeney
Jacques Sainte-Marie
Fabien Souillé
+ Global solvability of the Navier-Stokes equations with a free surface in the maximal $L_p\text{-}L_q$ regularity class 2017 Hirokazu Saito
+ Existence of smooth global solutions for a 1-D modified Navier-Stokes-Fourier model 2012 Jianzhu Sun
Jishan Fan
Gen Nakamura
+ The Stokes and Navier-Stokes equations in layer domains with and without a free surface 2014 Vom Fachbereich Mathematik
+ PDF Chat Solutions of the Navier- Stokes equation in a bounded domain 2018 Guy Cirier
+ The Navier–Stokes Equations in a Space of Bounded Functions 2015 Ken Abe

Works That Cite This (75)

Action Title Year Authors
+ Mathematical derivation of viscous shallow-water equations with zero surface tension 2011 Didier Bresch
Pascal Noble
+ PDF Chat On the global wellposedness of free boundary problem for the Navier-Stokes system with surface tension 2023 Hirokazu Saito
Yoshihiro Shibata
+ A solution formula and the R-boundedness for the generalized Stokes resolvent problem in an infinite layer with Neumann boundary condition 2020 Kenta Oishi
+ PDF Chat Existence for an Unsteady Fluid-Structure Interaction Problem 2000 Céline Grandmont
Yvon Maday
+ Regularity Results for Two-Dimensional Flows of Multiphase Viscous Fluids 1997 Benoı̂t Desjardins
+ On the maximal $L_p$-$L_q$ regularity of the Stokes problem with first order boundary condition; model problems 2012 Yoshihiro Shibata
Senjo Shimizu
+ PDF Chat Stability of Equilibria for Two-Phase Flows with Soluble Surfactant 2010 Dieter Bothe
Jan Prüß
+ Classical Well-Posedness of Free Boundary Problems in Viscous Incompressible Fluid Mechanics 2017 V. A. Solonnikov
И. В. Денисова
+ PDF Chat On some free boundary problem of the Navier–Stokes equations in the maximal<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub></mml:math>–<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:msub><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>q</mml:mi></mml:mrow></mml:msub></mml:math>regularity class 2015 Yoshihiro Shibata
+ On some free boundary problem of the Navier-Stokes equations in the maximal $L_p$-$L_q$ regularity class 2015 Yoshihiro Shibata