Simultaneous integer values of pairs of quadratic forms

Type: Article

Publication Date: 2015-01-27

Citations: 21

DOI: https://doi.org/10.1515/crelle-2014-0112

Abstract

Abstract We prove that a pair of integral quadratic forms in five or more variables will simultaneously represent “almost all” pairs of integers that satisfy the necessary local conditions, provided that the forms satisfy a suitable nonsingularity condition. In particular such forms simultaneously attain prime values if the obvious local conditions hold. The proof uses the circle method, and in particular pioneers a two-dimensional version of a Kloosterman refinement.

Locations

  • arXiv (Cornell University) - View - PDF
  • Journal für die reine und angewandte Mathematik (Crelles Journal) - View

Similar Works

Action Title Year Authors
+ Simultaneous Integer Values of Pairs of Quadratic Forms 2013 D. R. Heath‐Brown
Lillian B. Pierce
+ Pairs of quadratic forms 1976 William C. Waterhouse
+ Pairs of quadratic forms 1968 Magnus R. Hestenes
+ Collatz Conjecture Proof for Special Integer Subsets and a Unified Criterion for Twin Prime Identification 2023 Budee U Zaman
+ Collatz Conjecture Proof for Special Integer Subsets and a Unified Criterion for Twin Prime Identification 2023 Budee U Zaman
+ Simultaneous Quadratic Forms 1962 B. J. Birch
D. J. Lewis
T. G. Murphy
+ PDF Chat ON PAIRS OF LINEAR EQUATIONS IN FOUR PRIME VARIABLES AND POWERS OF TWO 2012 Yafang Kong
+ PDF Chat Ternary quadratic forms representing the same integers 2022 Jangwon Ju
+ Cubic forms over imaginary quadratic number fields and pairs of rational cubic forms 2023 Christian Bernert
Leonhard Hochfilzer
+ Classically Integral Quadratic Forms Excepting at Most Two Values 2016 Madeleine Barowsky
William Damron
Andrés Mejı́a
Frederick Saia
Nolan Schock
Katherine Thompson
+ Ternary quadratic forms representing same integers 2020 Jangwon Ju
+ Classically Integral Quadratic Forms Excepting at Most Two Values 2016 Madeleine Barowsky
William Damron
Andrés Mejı́a
Frederick Saia
Nolan Schock
Katherine Thompson
+ Quadratic pairs 2004 Andrew Chermak
+ Pairs of Reciprocal Quadratic Congruences Involving Primes 2013 John B. Cosgrave
Karl Dilcher
+ A pair of additive quartic forms. 1992 Hemar Godinho
+ A pair of additive quartic forms. 1992 Hemar Godinho
+ PDF Chat Integers represented by positive ternary quadratic forms 1927 L. E. Dickson
+ Pairs of Quadratic Forms over the Real Numbers 2023 David B. Leep
Nandita Sahajpal
+ PDF Chat Quadratic forms representing all integers coprime to 3 2017 Justin DeBenedetto
Jeremy Rouse
+ INTEGERS REPRESENTED BY IDONEAL QUADRATIC FORMS 2010 Pete L. Clark