Modifications and extensions to Harrison’s tight-binding theory

Type: Article

Publication Date: 2004-11-01

Citations: 86

DOI: https://doi.org/10.1103/physrevb.70.205101

Abstract

Harrison's tight-binding theory provides an excellent qualitative description of the electronic structure of the elements across the periodic table. However, the resulting band structures are in significant disagreement with those found by standard methods, particularly for the transition metals. For these systems we developed a procedure to generate both the prefactors of Harrison's hopping parameters and the onsite energies. Our approach gives an impressive improvement and puts Harrison's theory on a quantitative basis. Our method retains the most attractive aspect of the theory, in using a revised set of universal prefactors for the hopping integrals. In addition, a new form of onsite parameters allows us to describe the lattice constant dependence of the bands and the total energy, predicting the correct ground state for all transition, alkaline earth, and noble metals. This work represents not only a useful computational tool but also an important pedagogical enhancement for Harrison's books.

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • Physical Review B - View

Similar Works

Action Title Year Authors
+ Tight-binding : the correction of the simple d-band inconsistencies 2021 Jacques R. Eone
+ PDF Chat Fast and accurate prediction of material properties with three-body tight-binding model for the periodic table 2023 Kevin F. Garrity
Kamal Choudhary
+ Fast and Accurate Prediction of Material Properties with Three-Body Tight-Binding Model for the Periodic Table 2021 Kevin F. Garrity
Kamal Choudhary
+ Exploring the electronic potential of effective tight-binding hamiltonians 2024 Graziâni Candiotto
+ Applications of a tight-binding total-energy method for transition and noble metals: Elastic constants, vacancies, and surfaces of monatomic metals 1996 Michael J. Mehl
D. A. Papaconstantopoulos
+ Exploring the Electronic Potential of Effective Tight$-$Binding Hamiltonians 2024 Graziâni Candiotto
+ PDF Chat TopoTB: A software package for calculating the electronic structure and topological properties of the tight-binding model 2024 Xinliang Huang
Fawei Zheng
Ning Hao
+ PDF Chat Report on 2312.00498v1 2024 Bert Jorissen
Lucian Covaci
B. Partoens
+ PDF Chat Report on 2312.00498v2 2024 Bert Jorissen
Lucian Covaci
B. Partoens
+ PDF Chat Density Functional Calculations 2006 David Alejandro Hernández-Velázquez
Florian Senn
Francisco Tenor- Io
Gang Yang
Hossam A. Almossalami
Issake Seidu
Indranil Sinha
Jaime Gustavo Rodríguez- Zavala
Jia Fu
Jiena Yun
+ NanoNET: An extendable Python framework for semi-empirical tight-binding models 2020 Mykhailo V. Klymenko
Jesse A. Vaitkus
J. S. Smith
Jared H. Cole
+ Relativistic Tight-Binding Model for Hexagonal Lattice: Application to Graphene 2022 Rohin Sharma
Amit Shrestha
Dipendra B. Hamal
Katsuhiko Higuchi
Masahiko Higuchi
+ Comparative Analysis of Tight-Binding models for Transition Metal Dichalcogenides 2023 Bert Jorissen
Lucian Covaci
B. Partoens
+ Unified chemical theory of structure and bonding in elemental metals 2021 Yuanhui Sun
Lei Zhao
Chris J. Pickard
Russell J. Hemley
Yonghao Zheng
Maosheng Miao
+ Computing Heavy Elements 2011 N. Schunck
A. Baran
M. Kortelainen
Jordan McDonnell
Jorge J. Morè
W. Nazarewicz
Junchen Pei
Jason Sarich
J. A. Sheikh
A. Staszczak
+ Reformulation of DFT+U as a pseudo-hybrid Hubbard density functional 2014 Luis A. Agapito
Stefano Curtarolo
Marco Buongiorno Nardelli
+ PDF Chat Spin-orbit coupling in an<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>f</mml:mi></mml:math>-electron tight-binding model: Electronic properties of Th, U, and Pu 2009 Matthew D. Jones
R. C. Albers
+ Atomic bonding and electrical characteristics of metallic and semi-metallic elements 2022 Liangjing Ge
Maolin Bo
+ Full Breit Hamiltonian in the Multiwavelets Framework 2023 Christian Tantardini
Roberto Di Remigio
Magnar Bjørgve
Stig Rune Jensen
Luca Frediani
+ PDF Chat Semi-Automated Creation of Density Functional Tight Binding Models through Leveraging Chebyshev Polynomial-Based Force Fields 2021 Nir Goldman
Kyoung E. Kweon
Babak Sadigh
Tae Wook Heo
Rebecca Lindsey
C. Huy Pham
Laurence E. Fried
Bálint Aradi
Kiel Holliday
Jason R. Jeffries