Construction of solutions to the L2-critical KdV equation with a given asymptotic behaviour

Type: Article

Publication Date: 2007-06-15

Citations: 33

DOI: https://doi.org/10.1215/s0012-7094-07-13835-3

Abstract

We consider the critical Korteweg–de Vries (KdV) equation: ut+(uxx+u5)x=0, t,x∈R. Let Rj(t,x)=Qcj(x−xj−cjt) (j=1,…,N) be N soliton solutions to this equation. Denote U(t) the KdV linear group, and let V∈H1 be with sufficient decay on the right; that is, let (1+x+2+δ0)V∈L2 be for some δ0>0. We construct a solution u(t) to the critical KdV equation such that limt→∞‖u(t)−U(t)V−∑j=1NRj(t)‖H1=0.

Locations

  • Duke Mathematical Journal - View
  • CiteSeer X (The Pennsylvania State University) - View - PDF

Similar Works

Action Title Year Authors
+ Construction of solutions to the subcritical gKdV equations with a given asymptotical behavior 2006 Raphaël Côte
+ Existence of blow-up solutions in the energy space for the critical generalized KdV equation 2001 Frank Merle
+ Instability of solitons - revisited, I: the critical generalized KdV equation 2017 Luiz Gustavo Farah
Justin Holmer
Svetlana Roudenko
+ Instability of solitons - revisited, I: the critical generalized KdV equation 2017 Luiz Gustavo Farah
Justin Holmer
Svetlana Roudenko
+ On the mass-critical generalized KdV equation 2011 Rowan Killip
Soonsik Kwon
Shuanglin Shao
Monica Vişan
+ PDF Chat Instability of solitons–revisited, I: The critical generalized KdV equation 2019 Luiz Gustavo Farah
Justin Holmer
Svetlana Roudenko
+ PDF Chat On the critical KdV equation with time-oscillating nonlinearity 2011 Xavier Carvajal
Mahendra Panthee
M. Scialom
+ Decay for the nonlinear KdV equations at critical lengths 2020 Hoài-Minh Nguyên
+ Decay for the nonlinear KdV equations at critical lengths 2020 Hoài-Minh Nguyên
+ Asymptotic N -soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations 2005 Yvan Martel
+ PDF Chat Blow up for the critical generalized Korteweg–de Vries equation. I: Dynamics near the soliton 2014 Yvan Martel
Frank Merle
Pierre Raphaël
+ The supercritical generalized KdV equation: Global well-posedness in the energy space and below 2010 Luiz Gustavo Farah
Felipe Linares
Ademir Pastor
+ PDF Chat Blow-Up Dynamics for the $L^2$ critical case of the $2$D Zakharov-Kuznetsov equation 2024 Francisc Bozgan
Tej‐Eddine Ghoul
Nader Masmoudi
+ PDF Chat Near soliton dynamics and singularity formation for $ L^2$ critical problems 2014 Yvan Martel
Franck Merle
Pierre Raphaël
J. Szeftel
+ On the mass-critical generalized KdV equation 2009 Rowan Killip
Soonsik Kwon
Shuanglin Shao
Monica Vişan
+ Global existence for the critical generalized KdV equation 2002 Guilherme D. da Fonseca
Felipe Linares
Gustavo Ponce
+ Nonexistence of blow-up solution with minimal L2-mass for the critical gKdV equation 2002 Yvan Martel
Frank Merle
+ A Liouville theorem for the critical generalized Korteweg–de Vries equation 2000 Yvan Martel
Frank Merle
+ PDF Chat Asymptotic behavior of solutions to a higher-order KdV-type equation with critical nonlinearity 2019 Mamoru Okamoto
+ PDF Chat The supercritical generalized KdV equation: Global well-posedness in the energy space and below 2011 Luiz Gustavo Farah
Felipe Linares
Ademir Pastor