Continuity properties of the spectrum of operators on Lebesgue spaces

Type: Article

Publication Date: 1989-01-01

Citations: 4

DOI: https://doi.org/10.1090/s0002-9939-1989-0969515-7

Abstract

Fix <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="1 less-than-or-equal-to p less-than-or-equal-to s less-than-or-equal-to normal infinity"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>p</mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>s</mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">1 \leq p \leq s \leq \infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T Subscript x Baseline comma x element-of left-bracket p comma s right-bracket"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>x</mml:mi> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow> <mml:mo>[</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>s</mml:mi> </mml:mrow> <mml:mo>]</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{T_x},x \in \left [ {p,s} \right ]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, be the collection of bounded linear operators on the Lebesgue spaces <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript x"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>x</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^x}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> determined by some fixed operator <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T"> <mml:semantics> <mml:mi>T</mml:mi> <mml:annotation encoding="application/x-tex">T</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This paper concerns continuity properties of the map <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="x right-arrow sigma left-parenthesis upper T Subscript x Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>x</mml:mi> </mml:msub> </mml:mrow> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">x \to \sigma \left ( {{T_x}} \right )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Continuity Properties of the Spectrum of Operators on Lebesgue Spaces 1989 Bruce A. Barnes
+ PDF Chat Spectra and measure inequalities 1977 C. R. Putnam
+ PDF Chat Measurability properties of spectra 1986 S. Levi
Z. Słodkowski
+ PDF Chat On spectra of Hausdorff operators on 𝑙²₊ 1978 James A. Deddens
+ PDF Chat The analytic Radon-Nikodým property in Lebesgue Bochner function spaces 1987 Patrick N. Dowling
+ A condition for spectral continuity of positive elements 2008 S. Mouton
+ PDF Chat On the spectra of the restrictions of an operator 1977 Domingo A. Herrero
+ PDF Chat Surjectivity of 𝜑-accretive operators 1984 Jong An Park
Sehie Park
+ PDF Chat Continuity of the spectrum and spectral radius 1981 Gerard J. Murphy
+ The Hausdorff operator is bounded on the real Hardy space 𝐻¹(ℝ) 1999 Elijah Liflyand
Ferenc Móricz
+ PDF Chat Boundaries of the spectra in ℒ(𝒳) 1992 Woo Young Lee
+ PDF Chat Preservation of absolutely continuous spectrum for contractive operators 2023 Constanze Liaw
Sergei Treil
+ PDF Chat The spaces of functions of finite upper 𝑝-variation 1979 Robert Nelson
+ PDF Chat Property (𝐻) in Lebesgue-Bochner function spaces 1985 Bor-Luh Lin
Pei-Kee Lin
+ PDF Chat The Koebe semigroup and a class of averaging operators on 𝐻^{𝑝}(𝐷) 1993 Aristomenis G. Siskakis
+ Operators taking values in Lebesgue-Bochner spaces 2022 Nonna Dzhusoeva
Mohammad Sal Moslehian
Marat Pliev
M. В. Попов
+ PDF Chat On unaveraged convergence of positive operators in Lebesgue space 1973 Humphrey Fong
Louis Sucheston
+ PDF Chat A remark on the abstract Cauchy problem on spaces of Hölder continuous functions 1992 Matthias Hieber
Frank Räbiger
+ PDF Chat Averages of operators and their positivity 1998 Masaru Nagisa
Shuhei Wada
+ PDF Chat A spectral theorem for 𝐽-nonnegative operators 1980 Bernard N. Harvey