The <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msup></mml:math> Neumann problem for the heat equation in non-cylindrical domains

Type: Article

Publication Date: 2004-12-13

Citations: 25

DOI: https://doi.org/10.1016/j.jfa.2004.10.016

Locations

  • French digital mathematics library (Numdam) - View - PDF
  • Journal of Functional Analysis - View

Similar Works

Action Title Year Authors
+ The <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow> <mml:mi>p</mml:mi> </mml:msup></mml:math> Neumann problem for the heat equation in non-cylindrical domains 1998 Steve Hofmann
John L. Lewis
+ Heat equations in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="double-struck">R</mml:mi><mml:mo>×</mml:mo><mml:mi mathvariant="double-struck">C</mml:mi></mml:math> 2006 Andrew Raich
+ PDF Chat A note on boundary value problems for the heat equation in Lipschitz cylinders 1993 R. M. Brown
Zhong Wei Shen
+ Regularity of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mover accent="true"><mml:mo>∂</mml:mo><mml:mo>¯</mml:mo></mml:mover></mml:math>-Neumann problem at point of infinite type 2010 Tran Vu Khanh
Giuseppe Zampieri
+ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math> spaces and boundary value problems on time-scales 2007 Bryan P. Rynne
+ PDF Chat Estimates of caloric measure and the initial-Dirichlet problem for the heat equation in Lipschitz cylinders 1983 Eugene B. Fabes
Sandro Salsa
+ PDF Chat The oblique derivative problem for the heat equation in Lipschitz cylinders 1989 R. M. Brown
+ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>3</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:msup></mml:math>-regularity in the Dirichlet problem for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" display="inline" overflow="scroll"><… 2007 Rahul Jain
B. R. Nagaraj
+ PDF Chat On<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mover accent="true"><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mo>→</mml:mo></mml:mover><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>-Anisotropic Problems with Neumann Boundary Conditions 2015 Anass Ourraoui
+ Dirichlet and Neumann problems for planar domains with parameter 2013 Florian Bertrand
Xianghong Gong
+ PDF Chat Eigenvalues for a Neumann Boundary Problem Involving the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mi>p</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>-Laplacian 2015 Qing Miao
+ PDF Chat Weak solutions of the porous medium equation in a cylinder 1993 Björn E. J. Dahlberg
Carlos E. Kenig
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mn>2</mml:mn><mml:mo>×</mml:mo><mml:mn>2</mml:mn></mml:math>systems of conservation laws with<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:msup><mml:mi mathvariant="bold">L</mml:mi><mml:mo>∞</mml:mo></mml:msup></mml:math>data 2010 Stefano Bianchini
Rinaldo M. Colombo
Francesca Monti
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e142" altimg="si7.svg"><mml:mi>k</mml:mi></mml:math>-contraction: Theory and applications 2021 Chengshuai Wu
Ilya Kanevskiy
Michael Margaliot
+ PDF Chat A Fatou theorem for the solution of the heat equation at the corner points of a cylinder 1992 Kin Ming Hui
+ Probing the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.gif" overflow="scroll"><mml:mrow><mml:msub><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> approximation to the linear Boltzmann equation in 3D 2015 Sergey A. Rukolaine
Olga Chistiakova
+ The Neumann problem in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mi>p</mml:mi></mml:msup></mml:math> on Lipschitz and convex domains 2008 Aekyoung Shin Kim
Zhongwei Shen
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="script">N</mml:mi><mml:mo>=</mml:mo><mml:msup><mml:mn>2</mml:mn><mml:mo>*</mml:mo></mml:msup></mml:math> hydrodynamics 2004 Alex Buchel
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:mi mathvariant="normal">CFT</mml:mi></mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mn>4</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math>partition functions and the heat kernel on<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:mrow><mml:mi mathvariant="normal">AdS</mml:mi></mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mn>5</mml:… 2013 Shailesh Lal
+ On the regularity of the heat equation solution in non-cylindrical domains: Two approaches 2011 Arezkı Kheloufı
Boubaker‐Khaled Sadallah