Smooth extensions of functions on separable Banach spaces

Type: Article

Publication Date: 2009-10-28

Citations: 12

DOI: https://doi.org/10.1007/s00208-009-0441-6

Locations

  • Mathematische Annalen - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Smooth extensions of functions on separable Banach spaces 2009 Daniel Azagra
R. Fry
L. Keener
+ Smooth extension of functions on non-separable Banach spaces 2010 M. J. Sevilla
Luis Sánchez-González
+ Smooth extension of functions on a certain class of non-separable Banach spaces 2010 M. J. Sevilla
Luis Sánchez-González
+ Smooth extension of functions on a certain class of non-separable Banach spaces 2010 M. J. Sevilla
Luis Sánchez-González
+ PDF Chat On smooth extensions of vector-valued functions defined on closed subsets of Banach spaces 2012 M. J. Sevilla
Luis Sánchez-González
+ On smooth extensions of vector-valued functions defined on closed subsets of Banach spaces 2011 M. J. Sevilla
Luis Sánchez-González
+ PDF Chat Smooth extension of functions on a certain class of non-separable Banach spaces 2011 M. J. Sevilla
Luis Sánchez-González
+ C 1-Smoothness in Separable Spaces 2010 Marián Fabian
Petr Habala
Petr Hájek
Vicente Montesinos
Václav Zizler
+ PDF Chat Erratum to: Smooth extensions of functions on separable Banach spaces 2010 Daniel Azagra
R. Fry
L. Keener
+ Extraction of critical points and extension of smooth functions on Banach spaces 2019 Miguel García‐Bravo
+ PDF Chat Perturbed smooth Lipschitz extensions of uniformly continuous functions on Banach spaces 2004 Daniel Azagra
R. Fry
Alejandro Montesinos
+ Approximation by smooth functions with no critical points on separable Banach spaces 2006 Daniel Azagra
M. J. Sevilla
+ Smooth approximations of norms in separable Banach spaces 2011 Petr Hájek
Jarno Talponen
+ Smooth approximations of norms in separable Banach spaces 2011 Petr Hájek
Jarno Talponen
+ Approximation by smooth functions with no critical points on separable Banach spaces 2005 Daniel Azagra
M. J. Sevilla
+ PDF Chat Every closed convex set is the set of minimizers of some $C^{\infty }$-smooth convex function 2002 Daniel Azagra
Juan Ferrera
+ Separable Banach Spaces 2007
+ PDF Chat Smooth Banach spaces 1966 Kondagunta Sundaresan
+ Smooth Banach spaces 1967 Kondagunta Sundaresan
+ An Extension Theorem for convex functions of class $C^{1,1}$ on Hilbert spaces 2016 Daniel Azagra
Carlos Mudarra