Multiplicity one theorems

Type: Article

Publication Date: 2010-08-09

Citations: 71

DOI: https://doi.org/10.4007/annals.2010.172.1413

Abstract

In the local, characteristic 0, non-Archimedean case, we consider distributions on GL.n C 1/ which are invariant under the adjoint action of GL.n/.We prove that such distributions are invariant by transposition.This implies multiplicity at most one for restrictions from GL.n C 1/ to GL.n/.Similar theorems are obtained for orthogonal or unitary groups.

Locations

  • arXiv (Cornell University) - View - PDF
  • Annals of Mathematics - View - PDF

Similar Works

Action Title Year Authors
+ Multiplicity one theorems 2010 Avraham Aizenbud
Dmitry Gourevitch
Stephen Rallis
GĂ©rard Schiffmann
+ Multiplicity one Theorems 2007 Avraham Aizenbud
Dmitry Gourevitch
Steve Rallis
GĂ©rard Schiffmann
+ Multiplicity one Conjectures 2007 Steve Rallis
GĂ©rard Schiffmann
+ A proof of multiplicity one conjecture 2007 Avraham Aizenbud
Dmitry Gourevitch
+ A proof of the multiplicity one conjecture for GL(n) in GL(n+1) 2007 Avraham Aizenbud
Dmitry Gourevitch
+ Multiplicity one theorem for the unitary and orthogonal groups in positive characteristic 2020 Dor Mezer
+ PDF Chat Multiplicity one theorem for $$({\rm GL}_{n+1}({\mathbb{R}}), {\rm GL} _ {n} ({ \mathbb{R}}))$$ 2009 Avraham Aizenbud
Dmitry Gourevitch
+ Multiplicity one theorem over characteristic 2 2021 Dor Mezer
+ PDF Chat Multiplicity one theorems over positive characteristic 2022 Dor Mezer
+ Multiplicity One Theorems and Invariant Distributions 2009 Dmitry Gourevitch
+ Multiplicity one theorems 1979 Ilya Piatetski-Shapiro
+ Multiplicity one results for unitary groups 1998 Marcus Soares
+ (GL(n+1,R),GL(n,R)) is a Gelfand pair 2007 Avraham Aizenbud
Dmitry Gourevitch
Eitan Sayag
+ P-invariant distributions on GL(N) and the classification of unitary representations of GL(N) (Non-archimedean case) 1983 Joseph Bernstein
+ PDF Chat Global Jacquet–Langlands correspondence, multiplicity one and classification of automorphic representations 2008 Alexandru Ioan Badulescu
+ Multiplicity one theorems over positive characteristic 2020 Dor Mezer
+ PDF Chat Polynomial averages and pointwise ergodic theorems on nilpotent groups 2022 Alexandru D. Ionescu
Ákos Magyar
Mariusz Mirek
Tomasz Szarek
+ PDF Chat The strong multiplicity one theorem for đș𝐿_{𝑛} 1984 Carlos Moreno
+ Multiplicity Formulas 1996 Victor Guillemin
Eugene Lerman
Shlomo Sternberg
+ Operator ergodic theory for one-parameter decomposable groups 2011 Earl Berkson