Response of nonrelativistic confined systems

Type: Article

Publication Date: 1993-06-01

Citations: 18

DOI: https://doi.org/10.1103/physrevc.47.2901

Abstract

We study the nonrelativistic response of a ``diquark'' bound by confining forces, for which perturbation theory in the interaction fails. As nonperturbative alternatives we consider the Gersch-Rodriguez-Smith (GRS) theory and a summation method. We show that, contrary to the case of singular repulsive forces, the GRS theory can generally be applied to confined systems. When expressed in the GRS-West kinematic variable y, the response has a standard asymptotic limit and calculable dominant corrections of orders 1/q, 1/${\mathit{q}}^{2}$. That theory therefore clearly demonstrates how constituents, confined before and after the absorption of the transferred momentum and energy, behave as asymptotically free particles. We compare the GRS results with those of a summation method for harmonic and square-well confinement and also discuss the convergence of the GRS series for the response in powers of 1/q.

Locations

  • Physical Review C - View
  • arXiv (Cornell University) - View - PDF
  • PubMed - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat On the nature of the large-q expansion of the response for a non-relativistic confined system 1994 E. Pace
G. Salmè
A. S. Rinat
+ PDF Chat Green's function perspective on the nonlinear density response of quantum many-body systems 2024 Jan Vorberger
Tobias Dornheim
Maximilian Böhme
Zhandos A. Moldabekov
P. Tolias
+ PDF Chat Nonrelativistic Green's Function for Systems with Position-Dependent Mass 2003 A. D. Alhaidari
+ PDF Chat Nonlocally Induced (Quasirelativistic) Bound States: Harmonic Confinement and the Finite Well 2015 Piotr Garbaczewski
Mariusz Żaba
+ PDF Chat Beyond the binary collision approximation for the large-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>q</mml:mi></mml:math>response of liquid<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow /><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msup></mml:mrow><mml:mi mathvariant="normal">He</mml:mi></mml:math> 1998 A. S. Rinat
M. F. Taragin
+ Non-perturbative renormalization group :from equilibrium to non-equilibrium 2013 Federico Benitez
+ Beyond Confinement 2013 Chris Quigg
+ PDF Chat Linear response theory with finite-range interactions 2021 D. Davesne
A. Pastore
J. Navarro
+ PDF Chat Non-relativistic bound states in a finite volume 2012 S. König
Dean Lee
H.‐W. Hammer
+ PDF Chat Low-energy properties of non-perturbative quantum systems: A space reduction approach 2007 Tarek Khalil
J. Richert
+ Nonlocally-induced (quasirelativistic) bound states: Harmonic confinement and the finite well 2014 Piotr Garbaczewski
Mariusz Żaba
+ Nonlocally-induced (quasirelativistic) bound states: Harmonic confinement and the finite well 2014 Piotr Garbaczewski
Mariusz Żaba
+ PDF Chat Final state interaction contribution to the response of confined relativistic particles 2002 Mark Paris
V. R. Pandharipande
+ PDF Chat Semi-Classical Dirac Vacuum Polarisation in a Scalar Field 2016 Jonas Lampart
Mathieu Lewin
+ Non-Perturbative Hamiltonian Approaches To Strong Interaction Physics 1998 James P. Vary
T. J. Fields J. R. Spence
H. W. L. Naus
H. J. Pirner
Kumar S. Gupta
+ Non-Perturbative Hamiltonian Approaches To Strong Interaction Physics 1998 James P. Vary
T. J. Fields J. R. Spence
H. W. L. Naus
H. J. Pirner
Kumar S. Gupta
+ Reflecting magnon bound states 2008 Changrim Ahn
Dongsu Bak
Soo-Jong Rey
+ Introduction to the theory of x-ray matter interaction 2018 Nina Rohringer
+ The Total Green's Function of a Non-Interacting System 2016 David C. S. Roberts
+ The Total Green's Function of a Non-Interacting System 2016 David Roberts

Works Cited by This (1)

Action Title Year Authors
+ PDF Chat Scaling limit of a nonrelativistic model of confined "quarks" 1993 O. W. Greenberg