Noncompact commutators in the commutant of a cyclic operator

Type: Article

Publication Date: 1989-01-01

Citations: 0

DOI: https://doi.org/10.1090/s0002-9939-1989-0953012-9

Abstract

We show that the commutant of the operator <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S circled-times left-parenthesis upper I plus upper S Superscript asterisk Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mo>⊗<!-- ⊗ --></mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>I</mml:mi> <mml:mo>+</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>S</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msup> </mml:mrow> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">S \otimes \left ( {I + {S^*}} \right )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding="application/x-tex">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the shift operator, contains two operators <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding="application/x-tex">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A upper B minus upper B upper A"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mi>B</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi>B</mml:mi> <mml:mi>A</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">AB - BA</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is not compact operator.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat A matricial identity involving the self-commutator of a commuting 𝑛-tuple 1994 Raúl E. Curto
Ren Yi Jian
+ PDF Chat A generalization of the canonical commutation and anticommutation relations 1978 Steven B. Robbins
+ Commutators on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mi>ℓ</mml:mi><mml:mn>1</mml:mn></mml:msub></mml:math> 2009 Detelin Dosev
+ PDF Chat A structure theorem for the commutant of a class of cyclic subnormal operators 1986 Marc Raphael
+ PDF Chat Commutators as products of squares 1973 Roger C. Lyndon
Morris Newman
+ PDF Chat Trace class self-commutators 1983 C. A. Berger
Marion G. Ben-Jacob
+ PDF Chat Commutants that do not dilate 1972 Douglas N. Clark
+ PDF Chat Commutators, 𝐶^{𝑘}-classification, and similarity of operators 1971 Shmuel Kantorovitz
+ On the essential commutant of 𝒯(𝒬𝒞) 2007 Jingbo Xia
+ Commutators on 𝐿_{𝑝}, 1≤𝑝&lt;∞ 2012 Detelin Dosev
William B. Johnson
Gideon Schechtman
+ PDF Chat Commutators on a separable 𝐿^{𝑝}-space 1971 Charles Michael Schneeberger
+ PDF Chat A commutant of an unbounded operator algebra 1978 Atsushi Inoue
+ PDF Chat Almost commuting matrices need not be nearly commuting 1988 Man Duen Choi
+ PDF Chat Commutativity in operator algebras 1990 David P. Blecher
+ Almost commuting unitaries with spectral gap are near commuting unitaries 2009 Tobias J. Osborne
+ PDF Chat The group generated by unipotent operators 1986 C. K. Fong
A. R. Sourour
+ Conjugacy classes of commuting nilpotents 2019 William Haboush
Donghoon Hyeon
+ Unitary 𝑁-dilations for tuples of commuting matrices 2012 John E. McCarthy
Orr Shalit
+ Jet schemes of the commuting matrix pairs scheme 2009 B. Sethuraman
Klemen Šivic
+ PDF Chat The structure of quasinormal operators and the double commutant property 1982 John B. Conway
Pei Yuan Wu

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (1)

Action Title Year Authors
+ On multicyclic operators 1978 Domingo A. Herrero