A GENERALIZATION OF THE ZERO-DIVISOR GRAPH FOR MODULES

Type: Article

Publication Date: 2014-01-01

Citations: 16

DOI: https://doi.org/10.4134/jkms.2014.51.1.087

Abstract

Let R be a commutative ring with identity and M an R-module. In this paper, we associate a graph to M, say <TEX>${\Gamma}(M)$</TEX>, such that when M = R, <TEX>${\Gamma}(M)$</TEX> is exactly the classic zero-divisor graph. Many well-known results by D. F. Anderson and P. S. Livingston, in [5], and by D. F. Anderson and S. B. Mulay, in [6], have been generalized for <TEX>${\Gamma}(M)$</TEX> in the present article. We show that <TEX>${\Gamma}(M)$</TEX> is connected with <TEX>$diam({\Gamma}(M)){\leq}3$</TEX>. We also show that for a reduced module M with <TEX>$Z(M)^*{\neq}M{\backslash}\{0\}$</TEX>, <TEX>$gr({\Gamma}(M))={\infty}$</TEX> if and only if <TEX>${\Gamma}(M)$</TEX> is a star graph. Furthermore, we show that for a finitely generated semisimple R-module M such that its homogeneous components are simple, <TEX>$x,y{\in}M{\backslash}\{0\}$</TEX> are adjacent if and only if <TEX>$xR{\cap}yR=(0)$</TEX>. Among other things, it is also observed that <TEX>${\Gamma}(M)={\emptyset}$</TEX> if and only if M is uniform, ann(M) is a radical ideal, and <TEX>$Z(M)^*{\neq}M{\backslash}\{0\}$</TEX>, if and only if ann(M) is prime and <TEX>$Z(M)^*{\neq}M{\backslash}\{0\}$</TEX>.

Locations

  • Journal of the Korean Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat A generalization of the zero-divisor graph for modules 2019 Katayoun Nozari
Shiroyeh Payrovi
+ A generalized ideal-based zero-divisor graph 2014 M. J. Nikmehr
S. Khojasteh
+ PDF Chat EXTENDED ZERO-DIVISOR GRAPHS OF IDEALIZATIONS 2017 Driss Bennis
Jilali Mikram
Fouad Taraza
+ The M-Regular Graph of a Commutative Ring 2013 M. J. Nikmehr
F. Heydari
+ PDF Chat ON GRAPHS ASSOCIATED WITH MODULES OVER COMMUTATIVE RINGS 2016 S. Pirzada
Rameez Raja
+ THE ZERO-DIVISOR GRAPH OF A MODULE 2017 A. R. Naghipour
+ PDF Chat The M-Regular Graph of a Commutative Ring 2015 M. J. Nikmehr
F. Heydari
+ PDF Chat A generalization of total graphs of modules 2017 Ahmad Abbasi
Leila Hamidian Jahromi
+ Zero Divisor Graph on Modules 2015 Shaban Sedghi
Maryam Roza Yazdani
Yahya Shabanpour
+ The Submodule-Based Zero-Divisor Graph with Respect to Some Homomorphism 2013 Mohammad Hassan Baziar
N. Ranjbar
+ PDF Chat A Generalization of Torsion Graph for Modules 2024 Mohammad Jarrar
+ PDF Chat On a new extension of the zero-divisor graph (II) 2021 A. Cherrabi
H. Essannouni
E. Jabbouri
A. Ouadfel
+ PDF Chat GENERALIZATIONS OF THE ZERO-DIVISOR GRAPH 2019 David F. Anderson
Grace Elizabeth McClurkin
+ On the extended zero divisor graph of commutative rings 2016 Driss Bennis
Jilali Mikram
Fouad Taraza
+ PDF Chat THE CONNECTED SUBGRAPH OF THE TORSION GRAPH OF A MODULE 2012 Shaban Ghalandarzadeh
P. Malakooti Rad
Sara Shirinkam
+ PDF Chat On the diameter of the graph ГAnn(M)(R) 2012 David F. Anderson
Shaban Ghalandarzadeh
Sara Shirinkam
P. Malakooti Rad
+ PDF Chat The extended zero-divisor graph of a commutative ring I 2017 M. Bakhtyiari
M. J. Nikmehr
R. Nikandish
+ Zero Divisor Graph of a Commutative Ring 2021 Vitala Seeta
+ On a Generalized Zero-divisor Graph of a Commutative Ring with Respect to an ideal 2017 Priyanka Pratim Baruah
Kuntala Patra
+ PDF Chat Generalized zero-divisor graph of $*$-rings 2024 Anita Lande
Anil Khairnar