An Algorithm for $Ax = \lambda Bx$ with Symmetric and Positive-Definite <i>A</i> and <i>B</i>

Type: Article

Publication Date: 1991-10-01

Citations: 44

DOI: https://doi.org/10.1137/0612050

Locations

  • SIAM Journal on Matrix Analysis and Applications - View

Similar Works

Action Title Year Authors
+ An inverse subspace iteration for computing <i>q</i> smallest singular values of a matrix 2001 H. Schwetlick
Uwe Schnabel
+ How to use RSVD to solve the matrix equation<i>A</i>=<i>BXC</i> 2009 Yonghui Liu
Yongge Tian
+ A Matrix Eigenvalue Problem 1979 G. Efroymson
Angelika Steger
Stanly Steinberg
+ An iterative method for the least squares symmetric solution of matrix equation $AXB = C$ 2006 Jin-jun Hou
Zhenyun Peng
Xianglin Zhang
+ PDF Chat Computing eigenspaces with specified eigenvalues of a regular matrix pair (A, B) and condition estimation: theory, algorithms and software 1996 Bo KÄgström
Peter Poromaa
+ An Iterative Method for Bisymmetric Solutions and Optimal Approximation Solution of AXB=C 2007 Yaxin Peng
Xi-Yan Hu
Lei Zhang
+ A Method for Computing the Generalized Inverse of a Matrix 1966 B. Noble
+ A Matrix Eigenvalue Problem (G. Efroymson, A. Steger and S. Steinberg) 1981 Beresford Ν. Parlett
Richard Tolimieri
+ Inverse eigenvalue problem 2016 Edward Kwasi Boamah
+ FOM-inverse vector iteration method for computing a few smallest (largest) eigenvalues of pair (A,B) 2006 H. Saberi Najafi
Amirhossein Refahi
+ A gradient method for the matrix eigenvalue problemAx=?Bx 1974 Garry Rodrigue
+ A Tangent Algorithm for Generalized Eigenvalue and Singular Value Computation ; CU-CS-815-96 1996 Zlatko Drmač
+ Inverse Eigenvalue Problems: Theory, Algorithms, and Applications . By M OODY T. C HU &amp; G ENE H. G OLUB . Oxford University Press, 2005. 387 pp. ISBN 0-19-856664-6. ÂŁ60.00 2006 Nicholas J. Higham
+ Newton’s Method for the Characteristic Value Problem $Ax = \lambda Bx$ 1961 L. B. Rall
+ OPTIMAL APPROXIMATE SOLUTION OF THE MATRIX EQUATION AXB = C OVER SYMMETRIC MATRICES 2007 Anping
Liao
Yuan
Lei Lei
+ Weighted FOM-inverse vector iteration method for computing a few smallest (largest) eigenvalues of pair (A,B) 2007 H. Saberi Najafi
Amirhossein Refahi
M. Akbari
+ SVD and its Application to Generalized Eigenvalue Problems 2004 Thomas Melzer
+ Eigenpairs of some particular band Toeplitz matrices: A comment 2019 Sven‐Erik Ekström
Stefano Serra‐Capizzano
+ An efficient iterative method for solving the matrix equation <i>AXB</i> + <i>CYD</i> = <i>E</i> 2005 Zhenyun Peng
Yaxin Peng
+ An Eigenvalue Problem 1975 E. Wasserstrom