The difference between the Weil height and the canonical height on elliptic curves

Type: Article

Publication Date: 1990-01-01

Citations: 116

DOI: https://doi.org/10.1090/s0025-5718-1990-1035944-5

Abstract

Estimates for the difference of the Weil height and the canonical height of points on elliptic curves are used for many purposes, both theoretical and computational. In this note we give an explicit estimate for this difference in terms of the <italic>j</italic>-invariant and discriminant of the elliptic curve. The method of proof, suggested by Serge Lang, is to use the decomposition of the canonical height into a sum of local heights. We illustrate one use for our estimate by computing generators for the Mordell-Weil group in three examples.

Locations

  • Mathematics of Computation - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat The Difference Between the Weil Height and the Canonical Height on Elliptic Curves 1990 Joseph H. Silverman
+ Archimedean local height differences on elliptic curves 2018 J. Steffen Müller
Corinna Stumpe
+ Archimedean local height differences on elliptic curves 2018 J. Steffen Müller
Corinna Stumpe
+ Lower bounds of the canonical height on quadratic twists of elliptic curves 2011 Tadahisa Nara
+ Lower bounds of the canonical height on quadratic twists of elliptic curves 2014 Tadahisa Nara
+ Computing a Lower Bound for the Canonical Height on Elliptic Curves over ℚ 2006 J. E. Cremona
Samir Siksek
+ Computing a lower bound for the canonical height on elliptic curves over number fields 2010 Thotsaphon Thongjunthug
+ PDF Chat Archimedean local height differences on elliptic curves 2019 J. Steffen Müller
Corinna Stumpe
+ On the canonical height and Mordell-Weil groups of families of twists of elliptic curves 2012 忠央 奈良
+ PDF Chat Canonical heights on the Jacobians of curves of genus 2 and the infinite descent 1997 E. V. Flynn
Nigel P. Smart
+ Computing canonical heights on Jacobians 2010 J. Steffen Müller
+ A new record for the canonical height on an elliptic curve over . 2010 Sonal Jain
+ On the Mordell–Weil group of the elliptic curve <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>y</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>=</mml:mo><mml:msup><mml:mi>x</mml:mi><mml:mn>3</mml:mn></mml:msup><mml:mo>+</mml:mo><mml:mi>n</mml:mi></mml:math> 2011 Yasutsugu Fujita
Tadahisa Nara
+ Lower Bounds on the Canonical Height of Non-Torsion Points on Mordell Curves 2021 Alan Zhao
+ On the Mordell--Weil group of the elliptic curve y^2=x^3+n 2010 Yasutsugu Fujita
Tadahisa Nara
+ 計算橢圓曲線上的 Mordell-Weil 群 2003 蔡東霖
+ 計算橢圓曲線上的 Mordell-Weil 群 2003 Tung‐Lin Tsai
+ PDF Chat Computing the Mordell-Weil group of an elliptic curve over ℚ 1994 Josef Gebel
Horst G. Zimmer
+ PDF Chat The Mordell-Weil rank of elliptic curves 1987 Jasbir S. Chahal
+ The difference between the ordinary height and the canonical height on elliptic curves 2007 Yukihiro Uchida