Modifying Lax equations and the second Hamiltonian structure

Type: Article

Publication Date: 1980-10-01

Citations: 266

DOI: https://doi.org/10.1007/bf01394252

Locations

  • Deep Blue (University of Michigan) - View - PDF
  • Inventiones mathematicae - View

Similar Works

Action Title Year Authors
+ Hamiltonian structures and Lax equations 1990 O. Babelon
C-M. Viallet
+ First Order Differential Matrix Lax Operators and Drinfeld-Sokolov Reduction 1992
+ PDF Chat Lax pairs, recursion operators and bi-Hamiltonian representations of (3+1)-dimensional Hirota type equations 2018 M. B. Sheftel
D. Yazıcı
+ A generalization of the Lax equation 2001 Maria Przybylska
+ From 2 Lax equations to 1 zero-curvature equation 1997 Martin A. Guest
+ An operator equation with the second time derivative and Hamiltonian-admissible equations 2016 С. А. Будочкина
В. М. Савчин
+ Second-order evolution equations with symmetries 1985 S. I. Svinolupov
+ The Lax solution to a Hamilton–Jacobi equation and its generalizations: Part 2 2003 Ya.V. Mykytiuk
Anatoliy K. Prykarpatsky
Denis Blackmore
+ Second-order operator equations 1979 Aleksei A. Dezin
+ Symmetries of Second-Order Differential Equations and Decoupling 1993 W. Sarlet
Eduardo Martı́nez
+ On the Lax representation for the nonlinear evolution equations 1982 V. V. Nesterenko
+ Generalization of bi-Hamiltonian systems in (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mn>3</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:math>) dimension, possessing partner symmetries 2015 D. Yazıcı
+ Energy-dependent third-order Lax operators 1991 Marek Antonowicz
Allan P. Fordy
Q P Liu
+ PDF Chat Lax pairs, recursion operators and the perturbation of nonlinear evolution equations 1991 Russell L. Herman
+ Generalized structure of Lax representations for nonlinear evolution equation 1997 Qiao Zhijun
+ Hamiltonian Formalism for Difference Equations: Symmetries and First Integrals 2010
+ PDF Chat Recursion operators and bi-Hamiltonian representations of cubic evolutionary (2+1)-dimensional systems 2022 M. B. Sheftel
D. Yazıcı
+ Recursion operators and bi-Hamiltonian structure of the general heavenly equation 2015 M. B. Sheftel
А А Малых
D. Yazıcı
+ An introduction to Lax pairs and the zero curvature representation 2020 Govind S. Krishnaswami
T. R. Vishnu
+ On matrix Lax representations and constructions of Miura-type transformations for differential-difference equations 2024 Evgeny Chistov
Sergei Igonin