Bounds for Kakeya-type maximal operators associated with $k$-planes

Type: Article

Publication Date: 2007-01-01

Citations: 6

DOI: https://doi.org/10.4310/mrl.2007.v14.n1.a7

Abstract

A (d, k) set is a subset of R d containing a translate of every k-dimensional plane.Bourgain showed that for k ≥ k cr (d), where k cr (d) solves 2 k cr -1 + k cr = d, every (d, k) set has positive Lebesgue measure.We give a short proof of this result which allows for an improved L p estimate of the corresponding maximal operator, and which demonstrates that a lower value of k cr could be obtained if improved mixed-norm estimates for the x-ray transform were known.

Locations

  • Mathematical Research Letters - View - PDF
  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Bounds for Kakeya-type maximal operators associated with k-planes 2005 Richard Oberlin
+ THE (d,k) KAKEYA PROBLEM AND ESTIMATES FOR THE X-RAY TRANSFORM 2007 Richard Oberlin
+ A recursive bound for a Kakeya-type maximal operator 2005 Richard Oberlin
+ Mixed-Norm Estimates for the k-Plane Transform 2012 Javier Duoandikoetxea
Virginia Naibo
+ Two bounds for the x-ray transform 2006 Richard Oberlin
+ PDF Chat k-plane transforms and related operators on radial functions 2001 Javier Duoandikoetxea
Virginia Naibo
Osane Oruetxebarria
+ PDF Chat Kakeya sets and directional maximal operators in the plane 2009 Michael Bateman
+ Kakeya Sets and Directional Maximal Operators in the Plane 2007 Michael Bateman
+ On a Lipschitz Variant of the Kakeya Maximal Function 2006 Michael T. Lacey
Xiaochun Li
+ PDF Chat A remark on maximal operators along directions in ${\Bbb R}^2$ 2003 Angeles Alfonseca
Fernando Soria
Ana Vargas
+ PDF Chat Norm estimates for a Kakeya‐type maximal operator 2005 Themis Mitsis
+ PDF Chat A note on the Kakeya maximal operator 1996 José A. Barrionuevo
+ PDF Chat A note on the Kakeya maximal operator and radial weights on the plane 2016 Hiroki Saito
Yoshihiro Sawano
+ On the Fourier dimension of $(d,k)$-sets and Kakeya sets with restricted directions 2021 Jonathan M. Fraser
Terence L. J. Harris
Nicholas G. Kroon
+ Lacunarity, Kakeya-type sets and directional maximal operators 2014 Edward Kroc
Malabika Pramanik
+ Lacunarity, Kakeya-type sets and directional maximal operators 2014 Edward Kroc
Malabika Pramanik
+ PDF Chat On the Fourier dimension of (d, k)-sets and Kakeya sets with restricted directions 2022 Jonathan M. Fraser
Terence L. J. Harris
Nicholas G. Kroon
+ Sharp <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mi>p</mml:mi></mml:msup><mml:mtext>–</mml:mtext><mml:msup><mml:mi>L</mml:mi><mml:mi>q</mml:mi></mml:msup></mml:math> estimates for generalized k-plane transforms 2007 Philip T. Gressman
+ Kakeya-type sets and Maximal Operators 2021 Anthony Gauvan
+ Maximal Operators for cube skeletons 2018 Andrea Olivo
Pablo Shmerkin