d-WISE GENERATION OF SOME INFINITE GROUPS

Type: Article

Publication Date: 2008-12-01

Citations: 1

DOI: https://doi.org/10.1142/s0219498808003053

Abstract

What is the largest possible size of a subset of SL(n,ℤ) from which every pair of elements will be a generating set? We prove a general result on generation probabilities in profinite groups that suggests the cardinality of a maximal such subset equals that of the analogous subset of SL(n, ℤ/2ℤ).

Locations

  • Journal of Algebra and Its Applications - View
  • CiteSeer X (The Pennsylvania State University) - View - PDF

Similar Works

Action Title Year Authors
+ The probability of generating certain profinite groups by two elements 1994 Meenaxi Bhattacharjee
+ Random Elements in Profinite Groups 2008
+ Random Elements in Profinite Groups 2005
+ Probabilistic generation of finite groups with a unique minimal normal subgroups 2012 Eloisa Detomi
Andrea Lucchini
+ PDF Chat Probabilistic generation of finite almost simple groups 2024 Jason Fulman
Daniele Garzoni
Robert M. Guralnick
+ PDF Chat The number of maximal subgroups and probabilistic generation of‎ ‎finite groups 2020 A. Ballester‐Bolinches
R. Esteban‐Romero
Paz Jiménez–Seral
Hangyang Meng
+ Strongly generating elements in finite and profinite groups 2022 Eloisa Detomi
Andrea Lucchini
+ PDF Chat Random generation of finite and profinite groups and group enumeration 2011 Andrei Jaikin‐Zapirain
László Pyber
+ Simple groups, generation and probabilistic methods 2017 Timothy C. Burness
+ Random Generation of Finite Simple Groups 1999 Robert M. Guralnick
Martin W. Liebeck
Jan Saxl
Aner Shalev
+ PDF Chat Simple Groups, Generation and Probabilistic Methods 2019 Timothy C. Burness
+ PDF Chat $p$-elements in profinite groups 2024 Andrea Lucchini
Nowras Otmen
+ The expected number of random elements to generate a profinite group 2017 Mariapia Moscatiello
+ PDF Chat The probability of generating a finite simple group 2013 Nina E. Menezes
Martyn Quick
Colva M. Roney‐Dougal
+ How many elements are needed to generate a finite group with good probability? 2002 Eloisa Detomi
Andrea Lucchini
Fiorenza Morini
+ Random generation and chief length of finite groups 2013 Nina E. Menezes
+ Fibonacci Length of Generating Pairs in Groups 1990 C. M. Campbell
H. Doostie
E. F. Robertson
+ Generation Theorems for Finite Groups 2018 Paul Flavell
+ Simple groups, maximal subgroups, and probabilistic aspects of profinite groups 1996 Avinoam Mann
Aner Shalev
+ Infinite groups 1982 Г. А. Носков
В. Н. Ремесленников
В. А. Романьков