Integral inequalities of Hardy and Poincaré type

Type: Article

Publication Date: 1988-01-01

Citations: 28

DOI: https://doi.org/10.1090/s0002-9939-1988-0938664-0

Abstract

The Poincaré inequality <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartAbsoluteValue EndAbsoluteValue u StartAbsoluteValue EndAbsoluteValue Subscript p Baseline less-than-or-equal-to upper C StartAbsoluteValue EndAbsoluteValue nabla u StartAbsoluteValue EndAbsoluteValue Subscript p"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>u</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> </mml:mrow> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>C</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi mathvariant="normal">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">||u|{|_p} \leq C||\nabla u|{|_p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in a bounded domain holds, for instance, for compactly supported functions, for functions with mean value zero and for harmonic functions vanishing at a point. We show that it can be improved to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartAbsoluteValue EndAbsoluteValue u StartAbsoluteValue EndAbsoluteValue Subscript p Baseline less-than-or-equal-to upper C StartAbsoluteValue EndAbsoluteValue delta Superscript beta Baseline nabla u StartAbsoluteValue EndAbsoluteValue Subscript p"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>u</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> </mml:mrow> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>C</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>δ<!-- δ --></mml:mi> <mml:mi>β<!-- β --></mml:mi> </mml:msup> </mml:mrow> <mml:mi mathvariant="normal">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">||u|{|_p} \leq C||{\delta ^\beta }\nabla u|{|_p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="delta"> <mml:semantics> <mml:mi>δ<!-- δ --></mml:mi> <mml:annotation encoding="application/x-tex">\delta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the distance to the boundary, and the positive exponent <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="beta"> <mml:semantics> <mml:mi>β<!-- β --></mml:mi> <mml:annotation encoding="application/x-tex">\beta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> depends on the smoothness of the boundary.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Hardy inequalities 1990 Andreas Wannebo
+ A geometrical version of Hardy’s inequality for \stackrel{∘}𝑊^{1,𝑝}(Ω) 2004 Jesper Tidblom
+ Off-singularity bounds and Hardy spaces for Fourier integral operators 2020 Andrew Hassell
Pierre Portal
Jan Rozendaal
+ PDF Chat On Hardy’s inequality and Laplace transforms in weighted rearrangement invariant spaces 1973 Kenneth F. Andersen
+ Hardy inequalities related to Grushin type operators 2003 Lorenzo D’Ambrosio
+ Hardy's inequality in power-type weighted <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mrow><mml:mi>p</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mo>⋅</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mo>∞</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:math> spaces 2007 R.A. Mashiyev
B. Çekiç
Farman Mamedov
S. Ogras
+ Some Examples of Hardy-Littlewood Type Integral Inequalities 1984 William Norrie Everitt
+ Comparison theorems of Kolmogorov type and exact values of 𝑛-widths on Hardy–Sobolev classes 2005 Fang Gensun
Xuehua Li
+ PDF Chat An extension of the Hardy-Littlewood inequality 1979 Man Kam Kwong
Anton Zettl
+ PDF Chat Weighted inequalities for the one-sided Hardy-Littlewood maximal functions 1986 Eric T. Sawyer
+ Integral means of derivatives of univalent functions in Hardy spaces 2022 Fernando Pérez-González
Jouni Rättyä
Toni Vesikko
+ PDF Chat Poincaré Inequalities for Composition Operators with<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>φ</mml:mi></mml:mrow></mml:msup><mml:mtext>-</mml:mtext></mml:math>Norm 2014 Ru Fang
+ Hardy–Littlewood and Ulyanov inequalities 2021 Yurii Kolomoitsev
Sergey Tikhonov
+ PDF Chat Some inequalities related to Hölder’s inequality 1981 C. J. Neugebauer
+ PDF Chat Interpolation between weighted Hardy spaces 1992 Michael Ćwikel
John E. McCarthy
Thomas Wolff
+ PDF Chat Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator 1984 Eric T. Sawyer
+ PDF Chat Convolution in the harmonic Hardy class ℎ^{𝑝} with 0&lt;𝑝&lt;1 1990 Miroslav Pavlović
+ PDF Chat The Hardy-Littlewood theorem on fractional integration for Laguerre series 1995 Yūichi Kanjin
Enji Sato
+ PDF Chat On a theorem of Hardy and Littlewood on the polydisc 1986 Hong Oh Kim
+ PDF Chat An integral inequality 1991 J. Ernest Wilkins

Works That Cite This (26)

Action Title Year Authors
+ PDF Chat Comparison between W<sub>2</sub> distance and Ḣ<sup>−1</sup> norm, and Localization of Wasserstein distance 2017 Rémi Peyre
+ Some weighted Poincare inequalities 2009 Fausto Ferrari
Enrico Valdinoci
+ PDF Chat Weighted Poincaré and Korn inequalities for Hölder <i>α</i> domains 2005 Gabriel Acosta
Ricardo G. Durán
Ariel L. Lombardi
+ Improved fractional Poincar\'e type inequalities on John domains 2019 María Eugenia Cejas
Irene Drelichman
Javier C. Martínez-Perales
+ A note on generalized Poincar\'e-type inequalities with applications to weighted improved Poincar\'e-type inequalities 2019 Javier C. Martínez-Perales
+ PDF Chat Representation and uniqueness for boundary value elliptic problems via first order systems 2019 Pascal Auscher
Mihalis Mourgoglou
+ PDF Chat Weighted Discrete Hardy Inequalities on Trees and Applications 2022 Fernando López‐García
Ignacio Aymerich Ojea
+ A Survey About the Equation div u=f in Bounded Domains of $\mathbb{R}^{n}$ 2013 Emmanuel Russ
+ Layer potentials and boundary value problems for elliptic equations with complex <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mo>∞</mml:mo></mml:mrow></mml:msup></mml:math> coefficients satisfying the small Carleson measure norm condition 2014 Steve Hofmann
Svitlana Mayboroda
Mihalis Mourgoglou
+ PDF Chat Error estimates on anisotropic ${\mathcal Q}_1$ elements for functions in weighted Sobolev spaces 2005 Ricardo G. Durán
Ariel L. Lombardi