Safe protocol for controlling power consumption by a heterogeneous population of loads

Type: Article
Publication Date: 2012-06-01
Citations: 17
DOI: https://doi.org/10.1109/acc.2012.6314681

Abstract

Recent studies on control of aggregate power of an ensemble of thermostatically-controlled-loads (TCLs) have been concentrated on shifting the temperature set points of each TCL in the population. A sudden shift in the set point, however, is known to be associated with undesirable power oscillations which require closed-loop control strategies to regulate the aggregate power consumption of the population. In this article, we propose a new approach which we term as a "safe protocol" to implement the shift in temperature set point. It is shown analytically and verified numerically that by shifting the set point "safely" the aggregate power consumption can be changed to a different value within a time frame of the order of a TCL's cycle duration and avoid the undesired oscillations seen otherwise in a "sudden" shift. We discuss how the excess aggregate energy transferred under a safe shift in the set point could potentially mitigate the burden due to abnormal energy generation within a short time span.

Locations

  • arXiv (Cornell University)
  • 2022 American Control Conference (ACC)

Ask a Question About This Paper

Summary

Login to see paper summary

Recent studies on control of aggregate power of an ensemble of thermostatically-controlled-loads (TCLs) have been concentrated on shifting the temperature set points of each TCL in the population. A sudden … Recent studies on control of aggregate power of an ensemble of thermostatically-controlled-loads (TCLs) have been concentrated on shifting the temperature set points of each TCL in the population. A sudden shift in the set point, however, is known to be associated with undesirable power oscillations which require closed-loop control strategies to regulate the aggregate power consumption of the population. In this article, we propose a new approach which we term as a "safe protocol" to implement the shift in temperature set point. It is shown analytically and verified numerically that by shifting the set point "safely" the aggregate power consumption can be changed to a different value within a time frame of the order of a TCL's cycle duration and avoid the undesired oscillations seen otherwise in a "sudden" shift. We discuss how the excess aggregate energy transferred under a safe shift in the set point could potentially mitigate the burden due to abnormal energy generation within a short time span.
Recent studies on control of aggregate power of an ensemble of thermostatically-controlled-loads (TCLs) have been concentrated on shifting the temperature set points of each TCL in the population. A shift … Recent studies on control of aggregate power of an ensemble of thermostatically-controlled-loads (TCLs) have been concentrated on shifting the temperature set points of each TCL in the population. A shift in the set point, however, is known to be associated with undesirable power oscillations which require closed-loop control strategies to regulate the aggregate power consumption of the population. In this article, we propose a new approach which we term as a protocol to implement the shift in temperature set point. It is shown analytically and verified numerically that by shifting the set point safely the aggregate power consumption can be changed to a different value within a time frame of the order of a TCL's cycle duration and avoid the undesired oscillations seen otherwise in a sudden shift. We discuss how the excess aggregate energy transferred under a safe shift in the set point could potentially mitigate the burden due to abnormal energy generation within a short time span.
Thermostatically Controlled Loads (TCL), e.g. air-conditioners and heaters, are by far the most wide-spread consumers of electricity. Normally the devices are calibrated to provide the so-called bang-bang control of temperature … Thermostatically Controlled Loads (TCL), e.g. air-conditioners and heaters, are by far the most wide-spread consumers of electricity. Normally the devices are calibrated to provide the so-called bang-bang control of temperature -- changing from on to off, and vice versa, depending on temperature. Aggregation of a large group of similar devices into a statistical ensemble is considered, where the devices operate following the same dynamics subject to stochastic perturbations and randomized, Poisson on/off switching policy. We analyze, using theoretical and computational tools of statistical physics, how the ensemble relaxes to a stationary distribution and establish relation between the relaxation and statistics of the probability flux, associated with devices' cycling in the mixed (discrete, switch on/off, and continuous, temperature) phase space. This allowed us to derive and analyze spectrum of the non-equilibrium (detailed balance broken) statistical system and uncover how switching policy affects oscillatory trend and speed of the relaxation. Relaxation of the ensemble is of a practical interest because it describes how the ensemble recovers from significant perturbations, e.g. forceful temporary switching off aimed at utilizing flexibility of the ensemble in providing "demand response" services relieving consumption temporarily to balance larger power grid. We discuss how the statistical analysis can guide further development of the emerging demand response technology.
This paper considers demand side management in smart power grid systems containing significant numbers of thermostatically controlled loads such as air conditioning systems, heat pumps, etc. Recent studies have shown … This paper considers demand side management in smart power grid systems containing significant numbers of thermostatically controlled loads such as air conditioning systems, heat pumps, etc. Recent studies have shown that the overall power consumption of such systems can be regulated up and down centrally by broadcasting small setpoint change commands without significantly impacting consumer comfort. However, sudden simultaneous setpoint changes induce undesirable power consumption oscillations due to sudden synchronization of the on/off cycles of the individual units. In this paper, we present a novel algorithm for counter-acting these unwanted oscillations, which requires neither central management of the individual units nor communication between units. We present a formal proof of convergence of homogeneous populations to desynchronized status, as well as simulations that indicate that the algorithm is able to effectively dampen power consumption oscillations for both homogeneous and heterogeneous populations of thermostatically controlled loads.
This paper considers demand side management in smart power grid systems containing significant numbers of thermostatically controlled loads such as air conditioning systems, heat pumps, etc. Recent studies have shown … This paper considers demand side management in smart power grid systems containing significant numbers of thermostatically controlled loads such as air conditioning systems, heat pumps, etc. Recent studies have shown that the overall power consumption of such systems can be regulated up and down centrally by broadcasting small setpoint change commands without significantly impacting consumer comfort. However, sudden simultaneous setpoint changes induce undesirable power consumption oscillations due to sudden synchronization of the on/off cycles of the individual units. In this paper, we present a novel algorithm for counter-acting these unwanted oscillations, which requires neither central management of the individual units nor communication between units. We present a formal proof of convergence of homogeneous populations to desynchronized status, as well as simulations that indicate that the algorithm is able to effectively dampen power consumption oscillations for both homogeneous and heterogeneous populations of thermostatically controlled loads.
Thermostatically Controlled Loads (TCL), e.g. air-conditioners and heaters, are by far the most wide-spread consumers of electricity. Normally the devices are calibrated to provide the so-called bang-bang control of temperature … Thermostatically Controlled Loads (TCL), e.g. air-conditioners and heaters, are by far the most wide-spread consumers of electricity. Normally the devices are calibrated to provide the so-called bang-bang control of temperature - changing from on to off , and vice versa, depending on temperature. Aggregation of a large group of similar devices into a statistical ensemble is considered, where the devices operate following the same dynamics subject to stochastic perturbations and randomized, Poisson on/off switching policy. We analyze, using theoretical and computational tools of statistical physics, how the ensemble relaxes to a stationary distribution and establish relation between the re- laxation and statistics of the probability flux, associated with devices' cycling in the mixed (discrete, switch on/off , and continuous, temperature) phase space. This allowed us to derive and analyze spec- trum of the non-equilibrium (detailed balance broken) statistical system. and uncover how switching policy affects oscillatory trend and speed of the relaxation. Relaxation of the ensemble is of a practical interest because it describes how the ensemble recovers from significant perturbations, e.g. forceful temporary switching o aimed at utilizing flexibility of the ensemble in providing "demand response" services relieving consumption temporarily to balance larger power grid. We discuss how the statistical analysis can guide further development of the emerging demand response technology.
As the penetration of intermittent energy sources grows substantially, loads will be required to play an increasingly important role in compensating the fast time-scale fluctuations in generated power. Recent numerical … As the penetration of intermittent energy sources grows substantially, loads will be required to play an increasingly important role in compensating the fast time-scale fluctuations in generated power. Recent numerical modeling of thermostatically controlled loads (TCLs) has demonstrated that such load following is feasible, but analytical models that satisfactorily quantify the aggregate power consumption of a group of TCLs are desired to enable controller design. We develop such a model for the aggregate power response of a homogeneous population of TCLs to uniform variation of all TCL setpoints. A linearized model of the response is derived, and a linear quadratic regulator (LQR) has been designed. Using the TCL setpoint as the control input, the LQR enables aggregate power to track reference signals that exhibit step, ramp and sinusoidal variations. Although much of the work assumes a homogeneous population of TCLs with deterministic dynamics, we also propose a method for probing the dynamics of systems where load characteristics are not well known.
This paper presents a new aggregate power tracking control scheme for populations of thermostatically controlled loads (TCLs). The control design is performed in the framework of partial differential equations (PDEs) … This paper presents a new aggregate power tracking control scheme for populations of thermostatically controlled loads (TCLs). The control design is performed in the framework of partial differential equations (PDEs) based on a late-lumping procedure without truncating the infinite-dimensional model describing the dynamics of the TCL population. An input-output linearization control scheme, which is independent of system parameters and uses only partial state measurement, is derived, and a sliding model-like control is applied to achieve finite-time input-to-state stability for tracking error dynamics. Such a control strategy can ensure robust performance in the presence of modeling uncertainties, while considerably reducing the communication burden in large scale distributed systems similar to that considered in the present work. A rigorous analysis of the closed-loop stability of the underlying PDE system was conducted, which guaranteed the validity of the developed control scheme. Simulation studies were performed while considering two TCL populations with a significant difference in their size, and the results show that the developed control scheme performs well in both cases, thereby confirming the effectiveness of the proposed solution.
Recently it has been shown that an aggregation of Thermostatically Controlled Loads (TCLs) can be utilized to provide fast regulating reserve service for power grids and the behavior of the … Recently it has been shown that an aggregation of Thermostatically Controlled Loads (TCLs) can be utilized to provide fast regulating reserve service for power grids and the behavior of the aggregation can be captured by a stochastic battery with dissipation. In this paper, we address two practical issues associated with the proposed battery model. First, we address clustering of a heterogeneous collection and show that by finding the optimal dissipation parameter for a given collection, one can divide these units into few clusters and improve the overall battery model. Second, we analytically characterize the impact of imposing a no-short-cycling requirement on TCLs as constraints on the ramping rate of the regulation signal. We support our theorems by providing simulation results.
Recently it has been shown that an aggregation of Thermostatically Controlled Loads (TCLs) can be utilized to provide fast regulating reserve service for power grids and the behavior of the … Recently it has been shown that an aggregation of Thermostatically Controlled Loads (TCLs) can be utilized to provide fast regulating reserve service for power grids and the behavior of the aggregation can be captured by a stochastic battery with dissipation. In this paper, we address two practical issues associated with the proposed battery model. First, we address clustering of a heterogeneous collection and show that by finding the optimal dissipation parameter for a given collection, one can divide these units into few clusters and improve the overall battery model. Second, we analytically characterize the impact of imposing a no-short-cycling requirement on TCLs as constraints on the ramping rate of the regulation signal. We support our theorems by providing simulation results.
Recently it has been shown that an aggregation of Thermostatically Controlled Loads (TCLs) can be utilized to provide fast regulating reserve service for power grids and the behavior of the … Recently it has been shown that an aggregation of Thermostatically Controlled Loads (TCLs) can be utilized to provide fast regulating reserve service for power grids and the behavior of the aggregation can be captured by a stochastic battery with dissipation. In this paper, we address two practical issues associated with the proposed battery model. First, we address clustering of a heterogeneous collection and show that by finding the optimal dissipation parameter for a given collection, one can divide these units into few clusters and improve the overall battery model. Second, we analytically characterize the impact of imposing a no-short-cycling requirement on TCLs as constraints on the ramping rate of the regulation signal. We support our theorems by providing simulation results.
This paper presents a new aggregate power tracking control scheme for populations of thermostatically controlled loads (TCLs). The control design is performed in the framework of partial differential equations (PDEs) … This paper presents a new aggregate power tracking control scheme for populations of thermostatically controlled loads (TCLs). The control design is performed in the framework of partial differential equations (PDEs) based on a late-lumping procedure without truncating the infinite-dimensional model describing the dynamics of the TCL population. An input-output linearization control scheme, which is independent of system parameters and uses only partial state measurement, is derived, and a sliding model-like control is applied to achieve finite-time input-to-state stability for tracking error dynamics. Such a control strategy can ensure robust performance in the presence of modeling uncertainties, while considerably reducing the communication burden in large scale distributed systems similar to that considered in the present work. A rigorous analysis of the closed-loop stability of the underlying PDE system was conducted, which guaranteed the validity of the developed control scheme. Simulation studies were performed while considering two TCL populations with a significant difference in their size, and the results show that the developed control scheme performs well in both cases, thereby confirming the effectiveness of the proposed solution.
Abstract Thermostatically controlled loads, e.g., air conditioners and heaters, are by far the most widespread consumers of electricity. Normally the devices are calibrated to provide the so-called bang-bang control – … Abstract Thermostatically controlled loads, e.g., air conditioners and heaters, are by far the most widespread consumers of electricity. Normally the devices are calibrated to provide the so-called bang-bang control – changing from on to off, and vice versa, depending on temperature. We considered aggregation of a large group of similar devices into a statistical ensemble, where the devices operate following the same dynamics, subject to stochastic perturbations and randomized, Poisson on/off switching policy. Using theoretical and computational tools of statistical physics, we analyzed how the ensemble relaxes to a stationary distribution and established a relationship between the relaxation and the statistics of the probability flux associated with devices’ cycling in the mixed (discrete, switch on/off, and continuous temperature) phase space. This allowed us to derive the spectrum of the non-equilibrium (detailed balance broken) statistical system and uncover how switching policy affects oscillatory trends and the speed of the relaxation. Relaxation of the ensemble is of practical interest because it describes how the ensemble recovers from significant perturbations, e.g., forced temporary switching off aimed at utilizing the flexibility of the ensemble to provide “demand response” services to change consumption temporarily to balance a larger power grid. We discuss how the statistical analysis can guide further development of the emerging demand response technology.
Thermostatically controlled loads (TCLs) can provide ancillary services to the power network by aiding existing frequency-control mechanisms. TCLs are, however, characterized by an intrinsic limit cycle behavior, which raises the … Thermostatically controlled loads (TCLs) can provide ancillary services to the power network by aiding existing frequency-control mechanisms. TCLs are, however, characterized by an intrinsic limit cycle behavior, which raises the risk that these could synchronize when coupled with the frequency dynamics of the power grid, i.e., simultaneously switch, inducing persistent and possibly catastrophic power oscillations. To address this problem, schemes with a randomized response time in their control policy have been proposed in the literature. However, such schemes introduce delays in the response of TCLs to frequency feedback that may limit their ability to provide fast support at urgencies. In this article, we present a deterministic control mechanism for TCLs such that those switch when prescribed frequency thresholds are exceeded in order to provide ancillary services to the power network. For the considered scheme, we provide analytic conditions, which ensure that synchronization is avoided. In particular, we show that as the number of loads tends to infinity, there exist arbitrarily long time intervals where the frequency deviations are arbitrarily small. Our analytical results are verified with simulations on the Northeast Power Coordinating Council 140-bus system, which demonstrate that the proposed scheme offers improved frequency response compared with existing implementations.
Thermostatically controlled loads (TCLs) can provide ancillary services to the power network by aiding existing frequency control mechanisms. TCLs are, however, characterized by an intrinsic limit cycle behavior which raises … Thermostatically controlled loads (TCLs) can provide ancillary services to the power network by aiding existing frequency control mechanisms. TCLs are, however, characterized by an intrinsic limit cycle behavior which raises the risk that these could synchronize when coupled with the frequency dynamics of the power grid, i.e. simultaneously switch, inducing persistent and possibly catastrophic power oscillations. To address this problem, schemes with a randomized response time in their control policy have been proposed in the literature. However, such schemes introduce delays in the response of TCLs to frequency feedback that may limit their ability to provide fast support at urgencies. In this paper, we present a deterministic control mechanism for TCLs such that those switch when prescribed frequency thresholds are exceeded in order to provide ancillary services to the power network. For the considered scheme, we provide analytic conditions which ensure that synchronization is avoided. In particular, we show that as the number of loads tends to infinity, there exist arbitrarily long time intervals where the frequency deviations are arbitrarily small. Our analytical results are verified with simulations on the Northeast Power Coordinating Council (NPCC) 140-bus system, which demonstrate that the proposed scheme offers improved frequency response compared to conventional implementations.
Thermostatically controlled loads (TCLs) can provide ancillary services to the power network by aiding existing frequency control mechanisms. TCLs are, however, characterized by an intrinsic limit cycle behavior which raises … Thermostatically controlled loads (TCLs) can provide ancillary services to the power network by aiding existing frequency control mechanisms. TCLs are, however, characterized by an intrinsic limit cycle behavior which raises the risk that these could synchronize when coupled with the frequency dynamics of the power grid, i.e. simultaneously switch, inducing persistent and possibly catastrophic power oscillations. To address this problem, schemes with a randomized response time in their control policy have been proposed in the literature. However, such schemes introduce delays in the response of TCLs to frequency feedback that may limit their ability to provide fast support at urgencies. In this paper, we present a deterministic control mechanism for TCLs such that those switch when prescribed frequency thresholds are exceeded in order to provide ancillary services to the power network. For the considered scheme, we provide analytic conditions which ensure that synchronization is avoided. In particular, we show that as the number of loads tends to infinity, there exist arbitrarily long time intervals where the frequency deviations are arbitrarily small. Our analytical results are verified with simulations on the Northeast Power Coordinating Council (NPCC) 140-bus system, which demonstrate that the proposed scheme offers improved frequency response compared to conventional implementations.
Smart buildings are the need of the day with increasing demand-supply ratios and deficiency to generate considerably. In any modern non-industrial infrastructure, these demands mainly comprise of thermostatically controlled loads … Smart buildings are the need of the day with increasing demand-supply ratios and deficiency to generate considerably. In any modern non-industrial infrastructure, these demands mainly comprise of thermostatically controlled loads (TCLs), which can be manoeuvred. TCL loads like air-conditioner, heater, refrigerator, are ubiquitous, and their operating times can be controlled to achieve desired aggregate power. This power aggregation, in turn, helps achieve load management targets and thereby serve as ancillary service (AS) to the power grid. In this work, a distributed averaging protocol is used to achieve the desired power aggregate set by the utility using steady-state desynchronization. The results are verified using a computer program for a homogeneous and heterogeneous population of TCLs. Further, load following scenario has been implemented using the utility as a reference. Apart from providing a significant AS to the power grid, the proposed idea also helps reduce the amplitude of power system oscillations imparted by the TCLs. Hardware-based results are obtained to verify its implementation feasibility in real-time. Additionally, we extend this idea to data-driven paradigm and provide comparisons therein.
This paper discusses a two-step procedure, based on the use of formal abstractions, to generate a finite-space stochastic dynamical model as an aggregation of the continuous temperature dynamics of a … This paper discusses a two-step procedure, based on the use of formal abstractions, to generate a finite-space stochastic dynamical model as an aggregation of the continuous temperature dynamics of a homogeneous population of thermostatically controlled loads (TCLs). The temperature of a TCL is described by a stochastic difference equation and the TCL status (ON, OFF) by a deterministic switching mechanism. The procedure is deemed to be formal, as it allows the quantification of the error introduced by the abstraction. As such, it builds and improves on a known, earlier approximation technique used in the literature. Furthermore, the contribution discusses the extension to the instance of heterogeneous populations of TCLs by means of two approaches. It moreover investigates the problem of global (population-level) power reference tracking and load balancing for TCLs that are explicitly dependent on a control input. The procedure is tested on a case study and benchmarked against the mentioned existing approach in the literature.
The potential of demand side as a frequency reserve proposes interesting opportunity in handling imbalances due to intermittent renewable energy sources. This paper proposes a novel approach for computing the … The potential of demand side as a frequency reserve proposes interesting opportunity in handling imbalances due to intermittent renewable energy sources. This paper proposes a novel approach for computing the parameters of a stochastic battery model representing the aggregation of Thermostatically Controlled Loads (TCLs). A hysteresis based non-disruptive control is used using priority stack algorithm to track the reference regulation signal. The parameters of admissible ramp-rate and the charge limits of the battery are dynamically calculated using the information from TCLs that is the status (on/off), availability and relative temperature distance till the switching boundary. The approach builds on and improves on the existing research work by providing a straight-forward mechanism for calculation of stochastic parameters of equivalent battery model. The effectiveness of proposed approach is demonstrated by a test case having a large number of residential TCLs tracking a scaled down real frequency regulation signal.
A collection of thermostatically controlled loads (TCLs) -- such as air conditioners and water heaters -- can vary their power consumption within limits to help the balancing authority of a … A collection of thermostatically controlled loads (TCLs) -- such as air conditioners and water heaters -- can vary their power consumption within limits to help the balancing authority of a power grid maintain demand supply balance. Doing so requires loads to coordinate their on/off decisions so that the aggregate power consumption profile tracks a grid-supplied reference. At the same time, each consumer's quality of service (QoS) must be maintained. While there is a large body of work on TCL coordination, there are several limitations. One is that they do not provide guarantees on the reference tracking performance and QoS maintenance. A second limitation of past work is that they do not provide a means to compute a suitable reference signal for power demand of a collection of TCLs. In this work we provide a framework that addresses these weaknesses. The framework enables coordination of an arbitrary number of TCLs that: (i) is computationally efficient, (ii) is implementable at the TCLs with local feedback and low communication, and (iii) enables reference tracking by the collection while ensuring that temperature and cycling constraints are satisfied at every TCL at all times. The framework is based on a Markov model obtained by discretizing a pair of Fokker-Planck equations derived in earlier work by Malhame and Chong [21]. We then use this model to design randomized policies for TCLs. The balancing authority broadcasts the same policy to all TCLs, and each TCL implements this policy which requires only local measurement to make on/off decisions. Simulation results are provided to support these claims.
Transactive or market-based coordination strategies have recently been proposed for controlling the aggregate demand of a large number of electric loads. Such schemes offer operational benefits such as enforcing distribution … Transactive or market-based coordination strategies have recently been proposed for controlling the aggregate demand of a large number of electric loads. Such schemes offer operational benefits such as enforcing distribution feeder capacity limits and providing users with flexibility to consume energy based on the price they are willing to pay. However, this paper demonstrates that they are also prone to load synchronization and power oscillations. A transactive energy framework has been adopted and applied to a population of thermostatically controlled loads (TCLs). A modified TCL switching logic takes into account market coordination signals, alongside the natural hysteresis-based switching conditions. Studies of this market-based coordination scheme suggest that several factors may contribute to load synchronism, including sharp changes in the market prices that are broadcast to loads, lack of diversity in user specified bid curves, low feeder limits that are encountered periodically, and the form of user bid curves. Case studies illustrate challenges associated with market-based coordination strategies and provide insights into modifications that address those issues.
We explore methods to use thermostatically controlled loads (TCLs), such as water heaters and air conditioners, to provide ancillary services by assisting in balancing generation and load. We show that … We explore methods to use thermostatically controlled loads (TCLs), such as water heaters and air conditioners, to provide ancillary services by assisting in balancing generation and load. We show that by adding simple imbedded instructions and a small amount of memory to temperature controllers of TCLs, it is possible to design open-loop control algorithms capable of creating short-term pulses of demand response without unwanted power oscillations associated with temporary synchronization of the TCL dynamics. By moving a small amount of intelligence to each of the end point TCL devices, we are able to leverage our knowledge of the time dynamics of TCLs to shape the demand response pulses for different power system applications. A significant benefit of our open-loop method is the reduction from two-way to one-way broadcast communication which also eliminates many basic consumer privacy issues. In this work, we focus on developing the algorithms to generate a set of fundamental pulse shapes that can subsequently be used to create demand response with arbitrary profiles. Demand response control methods, such as the one developed here, open the door to fast, nonperturbative control of large aggregations of TCLs.
As the penetration of intermittent energy sources grows substantially, loads will be required to play an increasingly important role in compensating the fast time-scale fluctuations in generated power. Recent numerical … As the penetration of intermittent energy sources grows substantially, loads will be required to play an increasingly important role in compensating the fast time-scale fluctuations in generated power. Recent numerical modeling of thermostatically controlled loads (TCLs) has demonstrated that such load following is feasible, but analytical models that satisfactorily quantify the aggregate power consumption of a group of TCLs are desired to enable controller design. We develop such a model for the aggregate power response of a homogeneous population of TCLs to uniform variation of all TCL setpoints. A linearized model of the response is derived, and a linear quadratic regulator (LQR) has been designed. Using the TCL setpoint as the control input, the LQR enables aggregate power to track reference signals that exhibit step, ramp and sinusoidal variations. Although much of the work assumes a homogeneous population of TCLs with deterministic dynamics, we also propose a method for probing the dynamics of systems where load characteristics are not well known.