The Radon-Nikodym property and dentable sets in Banach spaces

Type: Article

Publication Date: 1974-01-01

Citations: 36

DOI: https://doi.org/10.1090/s0002-9939-1974-0344852-7

Abstract

In order to prove a Radon-Nikodym theorem for the Bochner integral, Rieffel [5] introduced the class of “dentable” subsets of Banach spaces. Maynard [3] later introduced the strictly larger class of “<inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="s"> <mml:semantics> <mml:mi>s</mml:mi> <mml:annotation encoding="application/x-tex">s</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dentable” sets, and extended Rieffel’s result to show that <italic>a Banach space has the Radon-Nikodym property if and only if every bounded nonempty subset of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="s"> <mml:semantics> <mml:mi>s</mml:mi> <mml:annotation encoding="application/x-tex">s</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dentable</italic>. He left open, however, the question as to whether, in a space with the Radon-Nikodym property, every bounded nonempty set is dentable. In the present note we give an elementary construction which shows this question has an affirmative answer.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat The Radon-Nikodym Property and Dentable Sets in Banach Spaces 1974 W. J. Davis
R. R. Phelps
+ PDF Chat Approximative Compactness and Radon-Nikodym Property in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:msup><mml:mrow><mml:mi>w</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">∗</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math>Nearly Dentable Banach Spaces and Applications 2015 Shaoqiang Shang
Yunan Cui
+ Dentability and the Radon-Nikodým property 1974 Robert Huff
+ Dentability and Differentiability 2010 Marián Fabian
Petr Habala
Petr Hájek
Vicente Montesinos
Václav Zizler
+ The Radon-Nikodým property for Banach spaces 1976 Robert Huff
+ PDF Chat Some characterizations of weak Radon-Nikodým sets 1982 Elias Saab
+ PDF Chat On the weak Radon-Nikodým property 1981 Nassif Ghoussoub
Elias Saab
+ Order dentability and the Radon-Nikodym property in Banach lattices 1979 Nassif Ghoussoub
Michel Talagrand
+ The Radon-Nikodým Property in Ordered Banach Spaces 1995 Ioannis A. Polyrakis
+ The Radon-Nikodym property for some Banach algebras related to the Fourier algebra 2011 Edmond E. Granirer
+ PDF Chat The sum of two Radon-Nikodým-sets need not be a Radon-Nikodým-set 1985 Walter Schachermayer
+ PDF Chat On the Radon-Nikodým theorem and locally convex spaces with the Radon-Nikodým property 1977 G. Y. H.
+ Maps with the Radon-Nikod\'ym property 2016 Luis C. García‐Lirola
M. Raja
+ Maps with the Radon-Nikodým property 2016 Luis C. García‐Lirola
M. Raja
+ The Radon-Nikodým Property for Banach-Spaces — A Survey of Geometric Aspects 1977 Robert Huff
+ Radon–Nikodým indexes and measures of weak noncompactness 2014 B. Cascales
Antonio Pérez
M. Raja
+ Radon-Nikodým compact spaces 1986 I. Namioka
+ PDF Chat A note on the Radon-Nikodym theorem 1973 Tae Geun Cho
Alfred Tong
+ The Radon-Nikodym theorem for Lebesgue-Bochner function spaces 1977 Kondagunta Sundaresan
+ A geometric characterization of the Radon-Nikodym property in Banach spaces 1978 Jean Bourgain