Type: Article
Publication Date: 1974-01-01
Citations: 36
DOI: https://doi.org/10.1090/s0002-9939-1974-0344852-7
In order to prove a Radon-Nikodym theorem for the Bochner integral, Rieffel [5] introduced the class of “dentable” subsets of Banach spaces. Maynard [3] later introduced the strictly larger class of “<inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="s"> <mml:semantics> <mml:mi>s</mml:mi> <mml:annotation encoding="application/x-tex">s</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dentable” sets, and extended Rieffel’s result to show that <italic>a Banach space has the Radon-Nikodym property if and only if every bounded nonempty subset of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="s"> <mml:semantics> <mml:mi>s</mml:mi> <mml:annotation encoding="application/x-tex">s</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dentable</italic>. He left open, however, the question as to whether, in a space with the Radon-Nikodym property, every bounded nonempty set is dentable. In the present note we give an elementary construction which shows this question has an affirmative answer.