Déformations de réseaux dans certains groupes résolubles

Type: Article

Publication Date: 2008-04-01

Citations: 0

DOI: https://doi.org/10.2969/jmsj/06020397

Abstract

We aim to study local rigidity and deformations for the following class of groups: the semidirect product Γ= Z n ⋊ A Z where n≥2 is an integer and A is a hyperbolic matrix in SL( n,Z ) , considered first as a lattice in the solvable Lie group G= R n ⋊ A R , then as a subgroup of the semisimple Lie group SL( n+1,R ) . We will notably show that, although Γ is locally rigid neither in G nor in H , it is locally SL( n+1,R ) -rigid in G in the sense that every small enough deformation of Γ in G is conjugated to Γ by an element of SL( n+1,R ) .

Locations

  • Journal of the Mathematical Society of Japan - View - PDF

Similar Works

Action Title Year Authors
+ Local rigidity of complex hyperbolic lattices in semisimple Lie groups 2015 Инканг Ким
Genkai Zhang
+ Local quaternionic rigidity for complex hyperbolic lattices 2009 Инканг Ким
Bruno Klingler
Pierre Pansu
+ PDF Chat Local rigidity of complex hyperbolic lattices in semisimple Lie groups 2017 Инканг Ким
Genkai Zhang
+ Local rigidity of affine actions of higher rank groups and lattices 2004 David Fisher
G. A. Margulis
+ PDF Chat Local quaternionic rigidity for complex hyperbolic lattices 2010 Инканг Ким
Bruno Klingler
P. Pansu
+ PDF Chat Discrete subgroups of semisimple Lie groups, beyond lattices 2024 Fanny Kassel
+ PDF Chat Deformations and rigidity of lattices in solvable Lie groups 2013 Oliver Baues
Benjamin Klopsch
+ Sublinear Rigidity of Lattices in Semisimple Lie Groups 2023 Ido Grayevsky
+ Dimension rigidity of lattices in semisimple Lie groups 2016 Cyril Lacoste
+ Dimension rigidity of lattices in semisimple Lie groups 2016 Cyril Lacoste
+ Rigidity of weakly hyperbolic actions of higher real rank semisimple Lie groups and their lattices 2001 G. A. Margulis
Nantian Qian
+ Rigidity problem for lattices in solvable Lie groups 1994 Alexander Starkov
+ PDF Chat Dimension rigidity of lattices in semisimple Lie groups 2018 Cyril Lacoste
+ A note on local rigidity 2017 Nicolas Bergeron
Tsachik Gelander
+ A note on local rigidity 2017 Nicolas Bergeron
Tsachik Gelander
+ Mini-Workshop: Reflection Groups in Negative Curvature 2020 Mikhail Belolipetsky
Vincent Emery
Ruth Kellerhals
+ Quasi-isometries and rigidity of solvable groups 2005 Alex Eskin
David Fisher
Kevin Whyte
+ Twisted conjugacy and quasi-isometric rigidity of irreducible lattices in semisimple Lie groups 2018 T. Mubeena
Parameswaran Sankaran
+ The Selberg–Weil–Kobayashi Local Rigidity Theorem for Exponential Lie Groups 2011 Lobna Abdelmoula
Ali Baklouti
Imed Kédim
+ Local rigidity for actions of Kazhdan groups on non commutative $L_p$-spaces 2015 Bachir Bekka

Works That Cite This (0)

Action Title Year Authors