Dahlberg’s bilinear estimate for solutions of divergence form complex elliptic equations

Type: Article

Publication Date: 2008-07-25

Citations: 13

DOI: https://doi.org/10.1090/s0002-9939-08-09500-2

Abstract

We consider divergence form elliptic operators $L=-\operatorname {div} A(x)\nabla$, defined in $\mathbb {R}^{n+1}=\{(x,t)\in \mathbb {R}^{n}\times \mathbb {R}\}, n \geq 2$, where the $L^{\infty }$ coefficient matrix $A$ is $(n+1)\times (n+1)$, uniformly elliptic, complex and $t$-independent. Using recently obtained results concerning the boundedness and invertibility of layer potentials associated to such operators, we show that if $Lu=0$ in $\mathbb {R}^{n+1}_+$, then for any vector-valued $\textbf {v} \in W^{1,2}_{loc},$ we have the bilinear estimate \[ \left |\iint _{\mathbb {R}^{n+1}_+} \nabla u \cdot \overline {\textbf {v}} dx dt \right |\leq C\sup _{t>0} \|u(\cdot ,t)\|_{L^2(\mathbb {R}^n)}\left ( \||t \nabla \textbf {v}\|| + \|N_*\textbf {v}\|_{L^2(\mathbb {R}^n)}\right ),\] where $\||F\|| \equiv \left (\iint _{\mathbb {R}^{n+1}_+} |F(x,t)|^2 t^{-1} dx dt\right )^{1/2},$ and where $N_*$ is the usual non-tangential maximal operator. The result is new even in the case of real symmetric coefficients and generalizes an analogous result of Dahlberg for harmonic functions on Lipschitz graph domains. We also identify the domain of the generator of the Poisson semigroup for the equation $Lu=0$ in $\mathbb {R}^{n+1}_+.$

Locations

  • Proceedings of the American Mathematical Society - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Dahlberg's bilinear estimate for solutions of divergence form complex elliptic equations 2007 Steve Hofmann
+ PDF Chat Bilinear embedding for divergence-form operators with complex coefficients on irregular domains 2020 Antonella Carbonaro
Oliver Dragičević
+ PDF Chat Bilinear embedding for perturbed divergence-form operator with complex coefficients on irregular domains 2024 Andrea Poggio
+ Bilinear embedding for divergence-form operators with complex coefficients on irregular domains 2019 Antonella Carbonaro
Oliver Dragičević
+ Bilinear embedding for divergence-form operators with complex coefficients on irregular domains 2019 Antonella Carbonaro
Oliver Dragičević
+ Analyticity of layer potentials and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math> solvability of boundary value problems for divergence form elliptic equations with complex <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mo>∞</mml:mo></mml:msup></mml:math> coefficients 2010 M. Angeles Alfonseca
Pascal Auscher
Andreas Axelsson
Steve Hofmann
Seick Kim
+ Layer potentials and boundary value problems for elliptic equations with complex $L^{\infty}$ coefficients satisfying the small Carleson measure norm condition 2013 Steve Hofmann
Svitlana Mayboroda
Mihalis Mourgoglou
+ $L^2$ estimates for commutators of the Dirichlet-to-Neumann Map associated to elliptic operators with complex-valued bounded measurable coefficients on $\mathbb{R}^{n+1}_+$ 2021 Steve Hofmann
Guoming Zhang
+ Trilinear embedding for divergence-form operators with complex coefficients 2021 Antonella Carbonaro
Oliver Dragičević
Vjekoslav Kovač
Kristina Ana Škreb
+ PDF Chat Bilinear embedding in Orlicz spaces for divergence-form operators with complex coefficients 2023 Vjekoslav Kovač
Kristina Ana Škreb
+ $L^2$ Solvability of boundary value problems for divergence form parabolic equations with complex coefficients 2016 Kaj Nyström
+ Boundedness of single layer potentials associated to divergence form parabolic equations with complex coefficients 2015 Alejandro J. Castro
Kaj Nyström
Olow Sande
+ $L^2$ Solvability of boundary value problems for divergence form parabolic equations with complex coefficients 2016 Kaj Nyström
+ Boundedness of single layer potentials associated to divergence form parabolic equations with complex coefficients 2015 Alejandro J. Castro
Kaj Nyström
Olow Sande
+ PDF Chat Bilinear embedding for Schrödinger-type operators with complex coefficients 2024 Antonella Carbonaro
Oliver Dragičević
+ Bilinear embedding in Orlicz spaces for divergence-form operators with complex coefficients 2021 Vjekoslav Kovač
Kristina Ana Škreb
+ Layer potentials and boundary value problems for elliptic equations with complex <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mo>∞</mml:mo></mml:mrow></mml:msup></mml:math> coefficients satisfying the small Carleson measure norm condition 2014 Steve Hofmann
Svitlana Mayboroda
Mihalis Mourgoglou
+ PDF Chat Bounded functional calculus for divergence form operators with dynamical boundary conditions 2024 Tim Böhnlein
Moritz Egert
Joachim Rehberg
+ PDF Chat L2 estimates for commutators of the Dirichlet-to-Neumann Map associated to elliptic operators with complex-valued bounded measurable coefficients on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msubsup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mo linebreak="badbreak" linebreakstyle="after">+</mml:mo></mml:mrow><mml:mrow><mml:mi>n</mml:mi><mml:mo linebreak="badbreak" linebreakstyle="after">+</mml:mo><mml:mn>1</mml:mn></mml… 2021 Steve Hofmann
Guoming Zhang
+ Bilinear embedding for Schrödinger-type operators with complex coefficients 2019 Antonella Carbonaro
Oliver Dragičević

Works That Cite This (13)

Action Title Year Authors
+ On domain of Poisson operators and factorization for divergence form elliptic operators 2013 Yasunori Maekawa
Hideyuki Miura
+ PDF Chat On domain of Poisson operators and factorization for divergence form elliptic operators 2016 Yasunori Maekawa
Hideyuki Miura
+ Commutator estimates for the Dirichlet-to-Neumann map associated to parabolic equations with complex-valued and measurable coefficients on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msubsup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mo linebreak="badbreak" linebreakstyle="after">+</mml:mo></mml:mrow><mml:mrow><mml:mi>n</mml:mi><mml:mo linebreak="badbreak" linebreakstyle="after">+</mml:mo><mml:mn>2</mml:mn></mml:mrow></… 2022 Guoming Zhang
+ Commutator estimates for the Dirichlet-to-Neumann map of Stokes systems in Lipschitz domains 2017 Qiang Xu
Weiren Zhao
Shulin Zhou
+ PDF Chat On Hofmann’s bilinear estimate 2009 Pascal Auscher
+ PDF Chat L2 estimates for commutators of the Dirichlet-to-Neumann Map associated to elliptic operators with complex-valued bounded measurable coefficients on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msubsup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mo linebreak="badbreak" linebreakstyle="after">+</mml:mo></mml:mrow><mml:mrow><mml:mi>n</mml:mi><mml:mo linebreak="badbreak" linebreakstyle="after">+</mml:mo><mml:mn>1</mml:mn></mml… 2021 Steve Hofmann
Guoming Zhang
+ Commutator Estimates for the Dirichlet-to-Neumann Map in Lipschitz Domains 2013 Zhongwei Shen
+ Homogenization of Green and Neumann Functions 2012 Carlos E. Kenig
Fanghua Lin
Zhongwei Shen
+ PDF Chat On Hofmann's bilinear estimate 2009 Pascal Auscher
+ Commutator Estimates for the Dirichlet-to-Neumann Map of Stokes Systems in Lipschitz Domains 2017 Qiang Xu
Weiren Zhao
Shulin Zhou