More Powerful Tests from Confidence Interval<i>p</i>Values

Type: Article

Publication Date: 1996-11-01

Citations: 57

DOI: https://doi.org/10.1080/00031305.1996.10473559

Abstract

Abstract In this article the problem of comparing two independent binomial populations is considered. It is shown that the test based on the confidence interval p value of Berger and Boos often is uniformly more powerful than the standard unconditional test. This test also requires less computational time.

Locations

  • The American Statistician - View
  • NCSU Libraries Repository (North Carolina State University Libraries) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat More Powerful Tests from Confidence Interval p Values 1996 Roger L. Berger
+ Improved<i>p</i>-Value Tests for Comparing Two Independent Binomial Proportions 2008 Che‐Yang Lin
Ming‐Chung Yang
+ The exact unconditional<i>z</i>-pooled test for equality of two binomial probabilities: optimal choice of the Berger and Boos confidence coefficient 2011 Stian Lydersen
Mette Langaas
Øyvind Bakke
+ Multiple Comparisons and P Values 1991 Warren S. Browner
+ Unconditional Confidence Interval for the Difference between Two Proportions 2003 Antonio Martín Andrés
I. Herranz Tejedor
+ PDF Chat Confidence intervals and <i>p</i> ‐values 2014 Richard Kay
+ PDF Chat Reconnecting<i>p</i>-Value and Posterior Probability Under One- and Two-Sided Tests 2020 Haolun Shi
Guosheng Yin
+ <i>P</i> Values 2005 Chris Dracup
+ PDF Chat Statement on <i>P</i>-values 2021 Thomas Gwise
Mark Rothmann
Hung Hung
Anup Amatya
Rebecca Rothwell
Sue Jane Wang
Yute Wu
Fraser Smith
Yu-Ting Weng
Eugenio Andraca‐Carrera
+ PDF Chat Simple methods for estimating confidence levels, or tentative probabilities, for hypotheses instead of <i>p</i> values 2019 Michael Wood
+ A Note on Confidence Intervals for a Binomial <i>p</i>: Andersson–Nerman vs. Wilson 2024 Per Gösta Andersson
+ Equivalence Testing for Binomial Random Variables 2001 Lawrence Barker
Henry Rolka
Deborah B. Rolka
Cedric Brown
+ Problems with Existing Procedures to Calculate Exact Unconditional P‐Values for Non‐Inferiority/Superiority and Confidence Intervals for Two Binomials and How to Resolve Them 2005 Joachim Röhmel
+ Improved<i>P</i>-Values for Testing Marginal Homogeneity in 2 × 2 Contingency Tables 2009 Lee‐Shen Chen
Ming‐Chung Yang
+ Approximate Confidence Intervals for a Binomial p—Once Again 2022 Per Gösta Andersson
+ PDF Chat Estimating the proportion of null hypotheses based on conditional distribution for arbitrarily correlated <i>p</i>-values 2025 Junsik Kim
+ Improved Confidence Statements for the Binomial Parameter 1984 John E. Angus
Ray E. Schafer
+ PDF Chat SAMPLE SIZE DETERMINATION BASED ON MID-P VALUE FOR USE WITH THE TESTING IN 2^|^times;2 COMPARATIVE TRIALS 1994 Manabu Iwasaki
Takuo Tanida
+ Unconditional exact tests for the difference of binomial probabilities—contrasted and compared 2003 Guido Skipka
Axel Munk
G FreÄ­tag
+ Exact tests of binomial p=1/2 when one binomial event possibly has different probability 1971 John E. Walsh
Grace J. Kelleher