Derivation, 𝐿^{Ψ}-bounded martingales and covering conditions

Type: Article

Publication Date: 1986-01-01

Citations: 3

DOI: https://doi.org/10.1090/s0002-9947-1986-0814922-8

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis normal upper Omega comma normal upper Sigma comma upper P right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> <mml:mo>,</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mi mathvariant="normal">Σ<!-- Σ --></mml:mi> <mml:mo>,</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mi>P</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(\Omega ,\,\Sigma ,\,P)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a complete probability space. Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis normal upper Sigma Subscript t Baseline right-parenthesis Subscript t element-of upper J"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">Σ<!-- Σ --></mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:mrow> <mml:msub> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>t</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>J</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{({\Sigma _t})_{t \in J}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a directed family of sub-<inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sigma"> <mml:semantics> <mml:mi>σ<!-- σ --></mml:mi> <mml:annotation encoding="application/x-tex">\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebras of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Sigma"> <mml:semantics> <mml:mi mathvariant="normal">Σ<!-- Σ --></mml:mi> <mml:annotation encoding="application/x-tex">\Sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis normal upper Phi comma normal upper Psi right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi mathvariant="normal">Φ<!-- Φ --></mml:mi> <mml:mo>,</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mi mathvariant="normal">Ψ<!-- Ψ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(\Phi ,\,\Psi )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a pair of conjugate Young functions. We investigate the covering conditions that are equivalent to the essential convergence of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript normal upper Psi"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi mathvariant="normal">Ψ<!-- Ψ --></mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^\Psi }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-bounded martingales. We do not assume that either <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Phi"> <mml:semantics> <mml:mi mathvariant="normal">Φ<!-- Φ --></mml:mi> <mml:annotation encoding="application/x-tex">\Phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Psi"> <mml:semantics> <mml:mi mathvariant="normal">Ψ<!-- Ψ --></mml:mi> <mml:annotation encoding="application/x-tex">\Psi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> satisfy the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Delta 2"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">Δ<!-- Δ --></mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\Delta _2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> condition. We show that when <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Phi"> <mml:semantics> <mml:mi mathvariant="normal">Φ<!-- Φ --></mml:mi> <mml:annotation encoding="application/x-tex">\Phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> satisfies condition Exp, that is when there exists an <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="a greater-than 0"> <mml:semantics> <mml:mrow> <mml:mi>a</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">a &gt; 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Phi left-parenthesis u right-parenthesis less-than-or-equal-to exp a u"> <mml:semantics> <mml:mrow> <mml:mi mathvariant="normal">Φ<!-- Φ --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>u</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>exp</mml:mi> <mml:mspace width="thinmathspace" /> <mml:mi>a</mml:mi> <mml:mi>u</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\Phi (u) \leq \operatorname {exp} \,au</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for each <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="u greater-than-or-equal-to 0"> <mml:semantics> <mml:mrow> <mml:mi>u</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">u \ge 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the essential convergence of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript normal upper Psi"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi mathvariant="normal">Ψ<!-- Ψ --></mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^\Psi }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-bounded martingales is equivalent to the classical covering condition <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper V Subscript normal upper Phi"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>V</mml:mi> <mml:mi mathvariant="normal">Φ<!-- Φ --></mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{V_\Phi }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This covers in particular the classical case <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Psi left-parenthesis t right-parenthesis equals t left-parenthesis log t right-parenthesis Superscript plus"> <mml:semantics> <mml:mrow> <mml:mi mathvariant="normal">Ψ<!-- Ψ --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>t</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">(</mml:mo> <mml:mi>log</mml:mi> <mml:mspace width="thinmathspace" /> <mml:mi>t</mml:mi> <mml:msup> <mml:mo stretchy="false">)</mml:mo> <mml:mo>+</mml:mo> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\Psi (t) = t{(\operatorname {log} \,t)^ + }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The growth condition Exp on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Phi"> <mml:semantics> <mml:mi mathvariant="normal">Φ<!-- Φ --></mml:mi> <mml:annotation encoding="application/x-tex">\Phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> cannot be relaxed. When <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper J"> <mml:semantics> <mml:mi>J</mml:mi> <mml:annotation encoding="application/x-tex">J</mml:annotation> </mml:semantics> </mml:math> </inline-formula> contains a countable cofinite set, we show that the essential convergence of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript normal upper Psi"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi mathvariant="normal">Ψ<!-- Ψ --></mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^\Psi }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-bounded martingales is equivalent to a covering condition <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper D Subscript normal upper Phi"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>D</mml:mi> <mml:mi mathvariant="normal">Φ<!-- Φ --></mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{D_\Phi }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (that is weaker than <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper V Subscript normal upper Phi"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>V</mml:mi> <mml:mi mathvariant="normal">Φ<!-- Φ --></mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{V_\Phi }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>). When <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Phi"> <mml:semantics> <mml:mi mathvariant="normal">Φ<!-- Φ --></mml:mi> <mml:annotation encoding="application/x-tex">\Phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> fails condition Exp, condition <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper D Subscript normal upper Phi"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>D</mml:mi> <mml:mi mathvariant="normal">Φ<!-- Φ --></mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{D_\Phi }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is optimal. Roughly speaking, in the case of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript 1"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^1 }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-bounded martingales, condition <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper D Subscript normal upper Phi"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>D</mml:mi> <mml:mi mathvariant="normal">Φ<!-- Φ --></mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{D_\Phi }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> means that, locally, the Vitali condition with finite overlap holds. We also investigate the case where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper J"> <mml:semantics> <mml:mi>J</mml:mi> <mml:annotation encoding="application/x-tex">J</mml:annotation> </mml:semantics> </mml:math> </inline-formula> does not contain a countable cofinal set and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Phi"> <mml:semantics> <mml:mi mathvariant="normal">Φ<!-- Φ --></mml:mi> <mml:annotation encoding="application/x-tex">\Phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> fails condition Exp. In this case, it seems impossible to characterize the essential convergence of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript normal upper Psi"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi mathvariant="normal">Ψ<!-- Ψ --></mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^\Psi }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-bounded martingales by a covering condition. Using the Continuum Hypothesis, we also produce an example where all equi-integrable <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript 1"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^1 }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-bounded martingales, but not all <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript 1"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^1 }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-bounded martingales, converge essentially. Similar results are also established in the derivation setting.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Approximation of 𝐿¹-bounded martingales by martingales of bounded variation 1978 D. L. Burkholder
Takuro Shintani
+ PDF Chat Representation of functions as limits of martingales 1974 Charles W. Lamb
+ PDF Chat The 𝑇1 theorem for martingales 1989 Andrew G. Bennett
+ PDF Chat A proof of the Burkholder theorem for martingale transforms 1981 Takuro Shintani
+ Martingale 1979 Alexander D. Wentzell
+ Derivation, L Ψ -Bounded Martingales and Covering Conditions 1986 Michel Talagrand
+ PDF Chat Minimal functions, martingales, and Brownian motion on a noncompact symmetric space 1987 J. C. Taylor
+ PDF Chat When does 𝑐𝑎(Σ,𝑋) contain a copy of 𝑙_{∞} or 𝑐₀? 1990 Lech Drewnowski
+ PDF Chat Mean-boundedness and Littlewood-Paley for separation-preserving operators 1997 Earl Berkson
T. A. Gillespie
+ PDF Chat A probabilistic approach to 𝐻^{𝑝}(𝑅^{𝑑}) 1974 D. W. Stroock
S. R. S. Varadhan
+ PDF Chat Π₁¹ sets of unbounded Loeb measure 1996 Boško Živaljević
+ PDF Chat 𝐶²-preserving strongly continuous Markovian semigroups 1973 William McGowen Priestley
+ PDF Chat Completeness of {𝑠𝑖𝑛𝑛𝑥+𝐾𝑖 𝑐𝑜𝑠𝑛𝑥} 1971 Jonathan I. Ginsberg
+ PDF Chat 𝐿_{𝑝}(𝜇,𝑋) (1&lt;𝑝&lt;∞) has the Radon-Nikodým property if 𝑋 does by martingales 1976 B. Turett
J. J. Uhl
+ PDF Chat A 5-𝑟 uniqueness theorem 1975 Jessie Ann Engle
+ Resolvent stochastic processes 2024 И. А. Ибрагимов
N. V. Smorodina
М. М. Фаддеев
+ PDF Chat “Lebesgue measure” on 𝑅^{∞} 1991 R.T.K. Baker
+ PDF Chat Markov processes with Lipschitz semigroups 1981 Richard F. Bass
+ PDF Chat On the dominated ergodic theorem in 𝐿₂ space 1974 M. A. Akcoglu
Louis Sucheston
+ PDF Chat Copies of 𝑙_{∞} in 𝐿^{𝑝}(𝜇;𝑋) 1990 José Mendoza