Backward Uniqueness for the Heat Equation in Cones

Type: Article

Publication Date: 2012-03-29

Citations: 13

DOI: https://doi.org/10.1080/03605302.2011.635323

Abstract

It was shown in [4 Escauriaza , L. , Seregin , G. , Šverák , V. ( 2003 ). L 3, ∞-solutions of the Navier–Stokes equations and backward uniqueness . Uspekhi Mat. Nauk 58:3–44 (in Russian); translation in Russian Math. Surveys 58 : 211 – 250 .[Crossref], [Web of Science ®] , [Google Scholar], 14 Seregin , G. , Šverák , V. ( 2002 ). The Navier–Stokes equations and backward uniqueness. Nonlinear problems in mathematical physics and related topics, II . In : Int. Math. Ser. (N.Y.) . Vol. 2 . New York : Kluwer/Plenum , pp. 353 – 366 . [Google Scholar]] that a bounded solution of the heat equation in a half-space which becomes zero at some time must be identically zero, even though no assumptions are made on the boundary values of the solutions. In a recent example, Luis Escauriaza showed that this statement fails if the half-space is replaced by cones with opening angle smaller than 90°. Here we show that the result remains true for cones with opening angle larger than 110°.

Locations

  • Communications in Partial Differential Equations - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Backward uniqueness for the heat equation in cones 2010 Lu Li
Vladimír Šverák
+ On backward uniqueness for the heat operator in cones 2014 Jie Wu
Wendong Wang
+ Stability results for backward heat equations with time-dependent coefficient in the Banach space<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msub><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="double-struck">R</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> 2022 Nguyen Van Duc
Pham Quy Muoi
Nguyễn Thị Vân Anh
+ Remarks on backward uniqueness of parabolic equations and incompressible Navier-Stokes well-posedness 2015 F. Lam
+ Stability results for the heat equation backward in time 2008 Ðinh Nho Hào
Nguyen Van Duc
+ Note on Backward Uniqueness for Heat Equations with Coefficients Non-Lipschitz Continuous in Time 2013 Shigeo Tarama
+ PDF Chat Backward uniqueness for the heat operator in a half-space 2003 Luis Escauriaza
G. Serëgin
Vladimír Šverák
+ PDF Chat On Backward Uniqueness for Parabolic Equations 2004 Luis Escauriaza
G. Serëgin
Vladimír Šverák
+ PDF Chat Backward Uniqueness for Parabolic Equations 2003 Luis Escauriaza
G. Serëgin
Vladimír Šverák
+ The IBVP of Navier-Stokes equations in half-space: existence and uniqueness of solutions non decreasing at infinity 2008 Paolo Maremonti
+ Uniqueness and non-uniqueness for the transport equation 2024 Jules Pitcho
+ ON STABILITY ESTIMATE FOR A BACKWARD HEAT TRANSFER PROBLEM 2003 Jijun Liu
+ PDF Chat The Navier—Stokes Equations and Backward Uniqueness 2002 G. Serëgin
Vladimír Šverák
+ ON STABILITY AND REGULARIZATION FOR BACKWARD HEAT EQUATION 2003 Jijun Liu
Luo Ding-jun
+ Existence of Infinitely Many Solutions for a Forward Backward Heat Equation 1983 Klaus Höllig
+ PDF Chat A Well Posed Problem for the Backward Heat Equation 1961 W. L. Miranker
+ PDF Chat A well posed problem for the backward heat equation 1961 W. L. Miranker
+ Uniqueness of Solutions on the Whole Time Axis to the Navier-Stokes Equations in Unbounded Domains 2015 Reinhard Farwig
Tomoyuki Nakatsuka
Yasushi Taniuchi
+ $L^2$ Stability and Weak-BV Uniqueness for Nonisentropic Euler Equations 2024 Geng Chen
Alexis Vasseur
+ PDF Chat Backward uniqueness for parabolic operators with non-Lipschitz coefficients 2015 Daniele Del Santo
Christian Jäh
Marius Paicu