Type: Article
Publication Date: 2015-02-26
Citations: 49
DOI: https://doi.org/10.1103/physrevd.91.036007
It is demonstrated that the complex Langevin method can simulate chiral random matrix theory at non-zero chemical potential. The successful match with the analytic prediction for the chiral condensate is established through a shift of matrix integration variables and choosing a polar representation for the new matrix elements before complexification. Furthermore, we test the proposal to work with a Langevin-time dependent quark mass and find that it allows us to control the fluctuations of the phase of the fermion determinant throughout the Langevin trajectory.