Nonrepetitive Colorings of Graphs—A Survey

Type: Article

Publication Date: 2007-01-01

Citations: 58

DOI: https://doi.org/10.1155/2007/74639

Abstract

A vertex coloring<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="E1"><mml:mi>f</mml:mi></mml:math>of a graph<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="E2"><mml:mi>G</mml:mi></mml:math>is nonrepetitive if there are no integer<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="E3"><mml:mrow><mml:mi>r</mml:mi><mml:mo>≥</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math>and a simple path<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="E4"><mml:mrow><mml:msub><mml:mi>v</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>,</mml:mo><mml:mo>…</mml:mo><mml:mo>,</mml:mo><mml:msub><mml:mi>v</mml:mi><mml:mrow><mml:mn>2</mml:mn><mml:mi>r</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="E5"><mml:mi>G</mml:mi></mml:math>such that<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="E6"><mml:mrow><mml:mi>f</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:msub><mml:mi>v</mml:mi><mml:mi>i</mml:mi></mml:msub></mml:mrow><mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mi>f</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:msub><mml:mi>v</mml:mi><mml:mrow><mml:mi>r</mml:mi><mml:mo>+</mml:mo><mml:mi>i</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math>for all<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="E7"><mml:mrow><mml:mi>i</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mo>…</mml:mo><mml:mo>,</mml:mo><mml:mi>r</mml:mi></mml:mrow></mml:math>. This notion is a graph-theoretic variant of nonrepetitive sequences of Thue. The paper surveys problems and results on this topic.

Locations

  • International Journal of Mathematics and Mathematical Sciences - View - PDF
  • CiteSeer X (The Pennsylvania State University) - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View

Similar Works

Action Title Year Authors
+ PDF Chat Nonrepetitive colorings of graphs 2005 Noga Alon
Jarosław Grytczuk
+ PDF Chat Nonrepetitive Graph Colouring 2021 David R. Wood
+ Nonrepetitive colorings of graphs of bounded tree-width 2007 André Kündgen
Michael J. Pelsmajer
+ PDF Chat Nonrepetitive List Colorings of the Integers 2021 Bartłomiej Bosek
Jarosław Grytczuk
Barbara Nayar
Bartosz Zaleski
+ Structure of some ( <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e108" altimg="si25.svg"><mml:msub><mml:mrow><mml:mi>P</mml:mi></mml:mrow><mml:mrow><mml:mn>7</mml:mn></mml:mrow></mml:msub></mml:math>, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e118" altimg="si26.svg"><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:math>)-free graphs with application to colorings 2024 Ran Chen
Di Wu
Baogang Xu
+ A note about online nonrepetitive coloring <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e52" altimg="si4.svg"><mml:mi>k</mml:mi></mml:math>-trees 2020 Balázs Keszegh
Xuding Zhu
+ PDF Chat Structural domination and coloring of some (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e60" altimg="si27.svg"><mml:mrow><mml:msub><mml:mrow><mml:mi>P</mml:mi></mml:mrow><mml:mrow><mml:mn>7</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>7</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>)-free graphs 2020 S.A. Choudum
T. Karthick
Manoj Belavadi
+ The complexity of nonrepetitive coloring 2008 Dániel Marx
Marcus Schaefer
+ PDF Chat Notes on Nonrepetitive Graph Colouring 2008 János Barát
David R. Wood
+ PDF Chat Nonrepetitive colorings of graphs 2007 Sebastian Czerwiński
Jarosław Grytczuk
+ On nonrepetitive colorings of paths and cycles 2023 Fábio Botler
Wanderson Lomenha
João Pedro de Souza
+ Divisibility and coloring of some <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e45" altimg="si38.svg"><mml:msub><mml:mrow><mml:mi>P</mml:mi></mml:mrow><mml:mrow><mml:mn>5</mml:mn></mml:mrow></mml:msub></mml:math>-free graphs 2024 Jialei Song
Baogang Xu
+ PDF Chat Nonrepetitive colorings of lexicographic product of graphs 2014 Balázs Keszegh
Balázs Patkós
Xuding Zhu
+ On nonrepetitive colorings of cycles 2023 Fábio Botler
Wanderson Lomenha
João Pedro de Souza
+ Non-repetitive colorings of infinite sets 2003 Jarosław Grytczuk
Wiesław Śliwa
+ Coloring clique-hypergraphs of graphs with no subdivision of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mn>5</mml:mn></mml:mrow></mml:msub></mml:math> 2015 Erfang Shan
Liying Kang
+ Nonrepetitive list colourings of paths 2010 Jarosław Grytczuk
Jakub Przybyło
Xuding Zhu
+ On <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si4.gif" display="inline" overflow="scroll"><mml:mn>1</mml:mn></mml:math>-improper <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si5.gif" display="inline" overflow="scroll"><mml:mn>2</mml:mn></mml:math>-coloring of sparse graphs 2013 O.V. Borodin
Alexandr Kostochka
Matthew Yancey
+ Couplages, cycles dans les graphes arrét-colorés et les colorations circulaires des graphes 2007 Guanghui Wang
+ PDF Chat Facial non-repetitive edge-coloring of plane graphs 2010 Frédéric Havet
Stanislav Jendrol’
Roman Soták
Erika Škrabuľáková