Large intervals between consecutive primes

Type: Article

Publication Date: 1971-01-01

Citations: 14

DOI: https://doi.org/10.1090/s0025-5718-1971-0299567-6

Abstract

Some results in number theory, including the Prime Number Theorem, can be obtained by assuming a random distribution of prime numbers. In addition, conjectural formulae, such as Cherwell’s for the density of prime pairs <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis p comma p plus 2 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>p</mml:mi> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(p,p + 2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> obtained in this way, have been found to agree well with the available evidence. Recently, primes have been determined over ranges of 150,000 numbers with starting points up to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="10 Superscript 15"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mn>10</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>15</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{10^{15}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Statistical arguments are used to obtain a formula for the largest interval between consecutive primes in such a range, and it is found to agree well with recorded values. The same method is applied to predict the maximum interval between consecutive primes occurring below a given integer.

Locations

  • Mathematics of Computation - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Large Intervals Between Consecutive Primes 1971 Joel Cadwell
+ PDF Chat Primes in Short Intervals 2004 Hugh L. Montgomery
K. Soundararajan
+ PDF Chat Primes in intervals of bounded length 2015 Andrew Granville
+ Primes in the intervals between primes squared 2014 Kolbjørn Tunstrøm
+ Primes in the intervals between primes squared 2014 Kolbjørn Tunstrøm
+ PDF Chat A note on the number of primes in short intervals 1990 D. A. Goldston
S. M. Gonek
+ Primes in short intervals 1984 Henryk Iwaniec
J. Pintz
+ Primes in short intervals 1982 Glyn Harman
+ PDF Chat The distribution of small gaps between successive primes 1974 Richard P. Brent
+ Intervals with few Prime Numbers 2004 Dan Wolczuk
+ Primes in intervals of bounded length 2014 Andrew Granville
+ Primes in intervals of bounded length 2014 Andrew Granville
+ PDF Chat Primes of the form 𝑝=1+𝑚²+𝑛² in short intervals 1998 Jie Wu
+ Primes in ‘Almost All’ Short Intervals 1982 D. R. Heath‐Brown
+ PDF Chat Primes in short intervals. 1985 Helmut Maier
+ PDF Chat Primes in Short Intervals: Heuristics and Calculations 2021 Andrew Granville
Allysa Lumley
+ PDF Chat Unusually large gaps between consecutive primes 1990 Helmut Maier
Carl Pomerance
+ PDF Chat Bounded length intervals containing two primes and an almost-prime 2013 James Maynard
+ PDF Chat Large prime factors on short intervals 2019 Jori Merikoski
+ A heuristic study of prime number distribution 2020 Carlos Ros Pérez