Product integration over infinite intervals. I. Rules based on the zeros of Hermite polynomials

Type: Article

Publication Date: 1983-01-01

Citations: 20

DOI: https://doi.org/10.1090/s0025-5718-1983-0689468-1

Abstract

The paper discusses both theoretical properties and practical implementation of product integration rules of the form <disp-formula content-type="math/mathml"> \[ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="integral Subscript negative normal infinity Superscript normal infinity Baseline k left-parenthesis x right-parenthesis f left-parenthesis x right-parenthesis d x almost-equals sigma-summation Underscript i equals 1 Overscript n Endscripts w Subscript n i Baseline f left-parenthesis x Subscript n i Baseline right-parenthesis comma"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−<!-- − --></mml:mo> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:msubsup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>k</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mi>d</mml:mi> <mml:mi>x</mml:mi> <mml:mo>≈<!-- ≈ --></mml:mo> <mml:munderover> <mml:mo movablelimits="false">∑<!-- ∑ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>i</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi>n</mml:mi> </mml:munderover> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>w</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> <mml:mi>i</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> <mml:mi>i</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> <mml:mo>,</mml:mo> </mml:mrow> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\int _{ - \infty }^\infty {k(x)f(x)\,dx \approx \sum \limits _{i = 1}^n {{w_{ni}}f({x_{ni}}),} }</mml:annotation> </mml:semantics> </mml:math> \] </disp-formula> where <italic>f</italic> is continuous, <italic>k</italic> is absolutely integrable, the nodes <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-brace x Subscript n i Baseline right-brace"> <mml:semantics> <mml:mrow> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> <mml:mi>i</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\{ {x_{ni}}\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are roots of the Hermite polynomials <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Subscript n Baseline left-parenthesis x right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>H</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{H_n}(x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and the weights <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-brace w Subscript n i Baseline right-brace"> <mml:semantics> <mml:mrow> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>w</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> <mml:mi>i</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\{ {w_{ni}}\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are chosen so that the rule is exact if <italic>f</italic> is any polynomial of degree <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="greater-than n"> <mml:semantics> <mml:mrow> <mml:mo>&gt;</mml:mo> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">&gt; n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Convergence of the rule to the exact integral as <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n right-arrow normal infinity"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">n \to \infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is proved for a wide class of functions <italic>f</italic> and <italic>k</italic> (including singular or oscillatory functions <italic>k</italic>), and rates of convergence are estimated. The rules are shown to have the property of asymptotic positivity, and as a consequence exhibit good numerical stability. Numerical calculations for some practical cases are presented, which show the method to be computationally effective for integrands (including highly oscillatory ones) that decay suitably at infinity. Applications of the method to integration over <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-bracket 0 comma normal infinity right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">[0,\infty )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are also discussed.

Locations

  • Mathematics of Computation - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat A partial integration formula for product integrals of unbounded operator-valued functions 1986 Rhonda J. Hughes
+ PDF Chat Quadrature formulas for semi-infinite integrals 1974 Ravindra Kumar
Manoj Jain
+ PDF Chat On the nonexistence of simplex integration rules for infinite integrals 1972 Philip J. Davis
P. Rabinowitz
+ PDF Chat Rational Chebyshev approximations for the exponential integral 𝐸₁(𝑥) 1968 William J. Cody
Henry C. Thacher
+ PDF Chat On weighted integrability of trigonometric series and 𝐿¹-convergence of Fourier series 1986 William O. Bray
Č. V. Stanojević
+ PDF Chat Chebyshev polynomials corresponding to a semi-infinite interval and an exponential weight factor 1973 David W. Kammler
+ PDF Chat Existence of sum and product integrals 1973 J.C. Helton
+ PDF Chat Polynomial approximations of functions with endpoint singularities and product integration formulas 1994 G. Mastroianni
Giovanni Monegato
+ PDF Chat An inequality for the integral means of a Hadamard product 1988 Miroslav Pavlović
+ PDF Chat On the Gaussian integration of Chebyshev polynomials 1972 A. R. Curtis
P. Rabinowitz
+ Infinite-dimensional integration and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e25" altimg="si3.svg"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math>-approximation on Hermite spaces 2024 Michael Gnewuch
Aicke Hinrichs
Klaus Ritter
Robin Rüßmann
+ PDF Chat Quadrature methods for integral equations of the second kind over infinite intervals 1981 Ian H. Sloan
+ PDF Chat On Stieltjes polynomials and Gauss-Kronrod quadrature 1990 Franz Peherstorfer
+ PDF Chat Chebyshev approximation of (1+2𝑥)𝑒𝑥𝑝(𝑥²)𝑒𝑟𝑓𝑐𝑥 in 0≤𝑥&lt;∞ 1981 M. M. Shepherd
J. G. Laframboise
+ PDF Chat Roots of 𝐽ᵧ(𝑧)±𝑖𝐽ᵧ₊₁(𝑧)=0 and the evaluation of integrals with cylindrical function kernels 1994 Srinivas Tadepalli
Costas E. Synolakis
+ PDF Chat Convergence of product integration rules over (0,∞) for functions with weak singularities at the origin 1995 G. Mastroianni
G. Monegato
+ Some definite integrals of the product of two Bessel functions of the second kind: (order zero) 1974 M. L. Glasser
+ PDF Chat Gauss quadrature rules for the evaluation of 2𝜋^{-1/2}∫₀^{∞}exp(-𝑥²)𝑓(𝑥)𝑑𝑥 1969 David Galant
+ A product integration method for numerical solutions of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si7.svg" display="inline" id="d1e990"><mml:mrow><mml:mi>φ</mml:mi><mml:mo>−</mml:mo></mml:mrow></mml:math>fractional differential equations 2024 Maria Amjad
Mujeeb ur Rehman
+ Numerical integration of products of fourier and ordinary polynomials 1970 D. G. Bettis