Quadrature-Galerkin approximations to solutions of elliptic differential equations

Type: Article

Publication Date: 1972-01-01

Citations: 7

DOI: https://doi.org/10.1090/s0002-9939-1972-0315919-2

Abstract

In practice the Galerkin method for solving elliptic partial differential equations yields equations involving certain integrals which cannot be evaluated analytically. Instead these integrals are approximated numerically and the resulting equations are solved to give “quadrature-Galerkin approximations” to the solution of the differential equation. Using a technique of J. Nitsche, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L squared"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a priori error bounds are obtained for the difference between the solution of the differential equation and a class of quadrature-Galerkin approximations.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Quadrature-Galerkin Approximations to Solutions of Elliptic Differential Equations 1972 Martin H. Schultz
+ Quadrature Methods 2013 Rainer Kreß
+ A numerical method based on quadrature rules for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1351" altimg="si3.svg"><mml:mi>ψ</mml:mi></mml:math>-fractional differential equations 2022 Aneela Sabir
Mujeeb ur Rehman
+ Numerical-solution by quadrature methods of differential and integro-differential equations. 1973 Walter A. Snow
+ PDF Chat Chebyshev type quadrature formulas 1970 David K. Kahaner
+ Numerical Quadrature and Solution of Ordinary Differential Equations. 1982 Hans J. Stetter
A. H. Stroud
+ PDF Chat The error norm of certain Gaussian quadrature formulae 1985 Georgios Akrivis
+ Quadrature based collocation methods for integral equations of the first kind 2011 M. Thamban Nair
+ PDF Chat Gauss quadrature rules for the evaluation of 2𝜋^{-1/2}∫₀^{∞}exp(-𝑥²)𝑓(𝑥)𝑑𝑥 1969 David Galant
+ PDF Chat An error estimate for Stenger’s quadrature formula 1982 S. Beighton
B. Noble
+ PDF Chat Tables for the evaluation of ∫₀^{∞}𝑥^{𝛽}𝑒^{-𝑥}𝑓(𝑥)𝑑𝑥 by Gauss-Laguerre quadrature 1963 Paul Concus
D. Cassatt
G. Jaehnig
E. Melby
+ Numerical Methods for the Solution of Differential and Integral Equations and Quadrature Formulas 1965 A. S. H.
H. C. Bakhvalov
+ Quadrature methods for Volterra equations of the second kind 1985 L. M. Delves
J. L. Mohamed
+ The Nystrom (quadrature) method for Fredholm equations of the second kind 1985 L. M. Delves
J. L. Mohamed
+ Quadrature Methods 1989 Rainer Kreß
+ Error Reduction in Gauss-Jacobi-Nyström Quadrature for Fredholm Integral Equations of the Second Kind 2010 Mark A. Kelmanson
Michelle Claire Tenwick
+ Numerical solution of the Fredholm integral equations with a quadrature method 2018 R. Katani
+ PDF Chat Quadrature formulas based on rational interpolation 1993 Walter Van Assche
Ingrid Vanherwegen
+ Quadrature-difference methods for solving linear and nonlinear singular integro-differential equations 2008 A. I. Fedotov
+ Numerical Quadrature and Solution of Ordinary Differential Equations 1974 A. H. Stroud