Counting Quadratic Nonresidues in Shifted Subsets of the Set of Quadratic Nonresidues for Primes<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mi>p</mml:mi><mml:mo>=</mml:mo><mml:mn>4</mml:mn><mml:mi>k</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:math>

Type: Article

Publication Date: 2015-01-01

Citations: 1

DOI: https://doi.org/10.1155/2015/163092

Abstract

Let<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mi>p</mml:mi><mml:mo>=</mml:mo><mml:mn>4</mml:mn><mml:mi>k</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:math>be a prime number and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="double-struck">F</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>the finite field with<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:math>elements. For<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"><mml:mi>x</mml:mi><mml:mo>∈</mml:mo><mml:mfenced open="⟦" close="⟧" separators="|"><mml:mrow><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mi>n</mml:mi></mml:mrow></mml:mfenced></mml:math>,<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M6"><mml:mrow><mml:msub><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>will denote the set of quadratic nonresidues less than or equal to<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M7"><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:math>. In this work we calculate the number of quadratic nonresidues in the shifted set<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M8"><mml:msub><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>p</mml:mi><mml:mo>-</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mo>/</mml:mo><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow></mml:mrow></mml:msub><mml:mo>+</mml:mo><mml:mi>a</mml:mi></mml:math>.

Locations

  • International Journal of Mathematics and Mathematical Sciences - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Counting certain quadratic partitions of zero modulo a prime number 2021 Wang Xiao
Aihua Li
+ PDF Chat On quadratic residues and nonresidues in difference sets modulo 𝑚 1994 J. Fabrykowski
+ PDF Chat A table of quintic number fields 1994 Albert Schwarz
Michael Pohst
Fredéric Diaz
+ The least quadratic non-residue 2021 Kevin J. McGown
Enrique Treviño
+ PDF Chat Quadratic fields with special class groups 1992 James J. Solderitsch
+ Exponents of class groups of real quadratic function fields 2004 Kalyan Chakraborty
Anirban Mukhopadhyay
+ Comparison of 4-class ranks of certain quadratic fields 2001 Frank Gerth
+ PDF Chat A note on class-number one in certain real quadratic and pure cubic fields 1986 M. Tennenhouse
H. C. Williams
+ PDF Chat On the distribution of quadratic residues and nonresidues modulo a prime number 1992 René Peralta
+ Exploring the Proportion of Prime Numbers in Quadratic Extensions of the Integers 2018 Jamie Lindemann Nelson
+ PDF Chat Non-primitive number fields of degree eight and of signature (2,3), (4,2), and (6,1) with small discriminant 1999 Schehrazad Selmane
+ PDF Chat The class number of 𝑄(√-𝑝), for 𝑃≡1(𝑚𝑜𝑑8) a prime 1972 Ezra Brown
+ PDF Chat Class groups of the quadratic fields found by F. Diaz y Diaz 1976 Daniel Shanks
+ Quadratic extensions of the integers, ℤ[√𝕕] 2018
+ PDF Chat On quadratic Waring’s problem in totally real number fields 2022 Jakub Krásenský
Pavlo Yatsyna
+ PDF Chat Quadratic polynomials which have a high density of prime values 1990 Gilbert Fung
Hywel C Williams
+ PDF Chat Enumeration of quartic fields of small discriminant 1993 Johannes Buchmann
David Ford
Michael Pohst
+ PDF Chat Class groups of quadratic fields 1976 Duncan A. Buell
+ PDF Chat Distinguished representations and quadratic base change for 𝐺𝐿(3) 1996 Hervé Jacquet
Yangbo Ye
+ PDF Chat Integer sequences having prescribed quadratic character 1970 D. H. Lehmer
Emma Lehmer
Daniel Shanks

Works That Cite This (1)

Action Title Year Authors
+ Propiedades aditivas en subconjuntos de los residuos cuadráticos 2015 Rocío Meza Moreno