Robust $M$-Estimators of Multivariate Location and Scatter

Type: Article

Publication Date: 1976-01-01

Citations: 946

DOI: https://doi.org/10.1214/aos/1176343347

Abstract

Let $\mathbf{x}_1,\cdots, \mathbf{x}_n$ be a sample from an $m$-variate distribution which is spherically symmetric up to an affine transformation. This paper deals with the robust estimation of the location vector $\mathbf{t}$ and scatter matrix $\mathbf{V}$ by means of "$M$-estimators," defined as solutions of the system: $\sum_i u_1(d_i)(\mathbf{x}_i - \mathbf{t}) = \mathbf{0}$ and $n^{-1}\sum_i u_2(d_i^2)(\mathbf{x}_i - \mathbf{t})(\mathbf{x}_i - \mathbf{t})' = \mathbf{V}$, where $d_i^2 = (\mathbf{x}_i - \mathbf{t})'\mathbf{V}^{-1}(\mathbf{x}_i - \mathbf{t})$. Existence and uniqueness of solutions of this system are proved under general assumptions about the functions $u_1$ and $u_2$. Then the estimators are shown to be consistent and asymptotically normal. The breakdown bound and the influence function are calculated, showing some weaknesses of the estimates for high dimensionality. An algorithm for the numerical calculation of the estimators is described. Finally, numerical values of asymptotic variances, and Monte Carlo small-sample results are exhibited.

Locations

  • The Annals of Statistics - View - PDF

Similar Works

Action Title Year Authors
+ Robust Estimation of Multivariate Location and Scatter 2005 Ricardo A. Maronna
Vı́ctor J. Yohai
+ PDF Chat Constrained M-estimation for multivariate location and scatter 1996 John T. Kent
David E. Tyler
+ Some Issues in the Robust Estimation of Multivariate Location and Scatter 1991 David E. Tyler
+ Robust M-Estimation of Location and Regression 1985 Lawrence Wu
+ PDF Chat Robust and efficient estimation of multivariate scatter and location 2016 Ricardo A. Maronna
Vı́ctor J. Yohai
+ PDF Chat Upper Bounds on Asymptotic Variances of $M$-Estimators of Location 1977 John R. Collins
+ Some Results on the Existence, Uniqueness, and Computation of the M-Estimates of Multivariate Location and Scatter 1988 David E. Tyler
+ Uniqueness of Maronna's $M$-estimators of scatter 2014 Yacine Chitour
Romain Couillet
Fréderic Pascal
+ PDF Chat Robust Location and Scatter Estimators in Multivariate Analysis 2006 Yijun Zuo
+ Robust and efficient estimation of high dimensional scatter and location 2015 Ricardo A. Maronna
Vı́ctor J. Yohai
+ PDF Chat On the Convergence of Maronna’s $M$-Estimators of Scatter 2014 Yacine Chitour
Romain Couillet
Frédéric Pascal
+ Robust Estimation of Location and Scatter (Covariance) Matrix 2018 Abdelhak M. Zoubir
Visa Koivunen
Esa Ollila
Michael Muma
+ PDF Chat Robustness properties of S-estimators of multivariate location and shape in high dimension 1996 David M. Rocke
+ New Algorithms for $M$-Estimation of Multivariate Location and Scatter 2013 Lutz Duembgen
Klaus Nordhausen
Heike Schuhmacher
+ Robust Estimation of Multivariate Location and Scatter 2016 Ricardo A. Maronna
Vı́ctor J. Yohai
+ PDF Chat Asymptotic Performance of Complex <inline-formula> <tex-math notation="LaTeX">$M$</tex-math> </inline-formula>-Estimators for Multivariate Location and Scatter Estimation 2019 Bruno MĂ©riaux
Chengfang Ren
Mohammed Nabil El Korso
Arnaud Breloy
Philippe Forster
+ Multivariate τ-estimators for location and scatter 1991 Hendrik P. LopuhaĂ€
+ New asymptotic properties for $M$-estimators 2017 Gordana Draơković
Frédéric Pascal
+ New algorithms for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si7.gif" display="inline" overflow="scroll"><mml:mi>M</mml:mi></mml:math>-estimation of multivariate scatter and location 2015 Lutz DĂŒmbgen
Klaus Nordhausen
Heike Schuhmacher
+ PDF Chat Highly Efficient Robust and Stable M-Estimates of Location 2021 Georgy Shevlyakov