Chebyshev polynomials corresponding to a semi-infinite interval and an exponential weight factor

Type: Article

Publication Date: 1973-01-01

Citations: 1

DOI: https://doi.org/10.1090/s0025-5718-1973-0329204-5

Abstract

An algorithm is presented for the computation of the <italic>n</italic> zeros of the polynomial <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="q Subscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>q</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{q_n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> having the property that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="q Subscript n Baseline left-parenthesis t right-parenthesis exp left-parenthesis negative t right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>q</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mi>exp</mml:mi> <mml:mspace width="thickmathspace" /> <mml:mo stretchy="false">(</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{q_n}(t)\exp \;( - t)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> alternates <italic>n</italic> times, at the maximum value 1, on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-bracket 0 comma plus normal infinity right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mo>+</mml:mo> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">[0, + \infty )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Numerical values of the zeros and extremal points are given for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n less-than-over-equals 10"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≦<!-- ≦ --></mml:mo> <mml:mn>10</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">n \leqq 10</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Mathematics of Computation - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Rational Chebyshev approximations for the exponential integral 𝐸₁(𝑥) 1968 William J. Cody
Henry C. Thacher
+ PDF Chat Chebyshev approximations for the exponential integral 𝐸𝑖(𝑥) 1969 William J. Cody
Henry C. Thacher
+ PDF Chat Real vs. complex rational Chebyshev approximation on an interval 1983 Lloyd N. Trefethen
Martin H. Gutknecht
+ Chebyshev dynamics on two and three intervals and isomonodromic deformations 2024 Vladimir Dragović
Vasilisa Shramchenko
+ Generalizations of Chebyshev polynomials and polynomial mappings 2007 Yang Chen
James Griffin
Mourad E. H. Ismail
+ PDF Chat Zeros of successive derivates of a class of real entire functions of exponential type 1987 Li-Chien Shen
+ Chebyshev approximation by exponential-polynomial products 1975 Charles B. Dunham
+ Polynomials that are positive on an interval 2000 Victoria Powers
Bruce Reznick
+ PDF Chat Chebyshev approximation by interpolating rationals on [𝛼,∞] 1975 Charles B. Dunham
+ PDF Chat Frequency fitting of rational approximations to the exponential functions 1983 Arieh Iserles
S. P. Nørsett
+ PDF Chat Chebyshev expansions for the Bessel function 𝐽_{𝑛}(𝑧) in the complex plane 1983 John P. Coleman
Andrew Monaghan
+ Chebyshev approximation by exponential-polynomial sums 1979 Charles B. Dunham
+ PDF Chat A lower Jackson bound on (-∞,∞) 1970 J. S. Byrnes
Donald J. Newman
+ PDF Chat Estimates for the imaginary parts of the zeros of a polynomial 1974 André Giroux
+ Weighted polynomial approximation in the complex plane 1997 Igor E. Pritsker
Richard S. Varga
+ PDF Chat Chebyshev approximation of (1+2𝑥)𝑒𝑥𝑝(𝑥²)𝑒𝑟𝑓𝑐𝑥 in 0≤𝑥&lt;∞ 1981 M. M. Shepherd
J. G. Laframboise
+ PDF Chat A monotonic property for the zeros of ultraspherical polynomials 1981 Andrea Laforgia
+ PDF Chat Inequalities for polynomials on the unit interval 1977 Q. I. Rahman
Gerhard Schmeißer
+ PDF Chat On integer Chebyshev polynomials 1997 Laurent Habsieger
Bruno Salvy
+ PDF Chat Hutchinson’s intervals and entire functions from the Laguerre–Pólya class 2024 Thu Hien Nguyen
Anna Vishnyakova