Type: Article
Publication Date: 1973-01-01
Citations: 1
DOI: https://doi.org/10.1090/s0025-5718-1973-0329204-5
An algorithm is presented for the computation of the <italic>n</italic> zeros of the polynomial <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="q Subscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>q</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{q_n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> having the property that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="q Subscript n Baseline left-parenthesis t right-parenthesis exp left-parenthesis negative t right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>q</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mi>exp</mml:mi> <mml:mspace width="thickmathspace" /> <mml:mo stretchy="false">(</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{q_n}(t)\exp \;( - t)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> alternates <italic>n</italic> times, at the maximum value 1, on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-bracket 0 comma plus normal infinity right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mo>+</mml:mo> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">[0, + \infty )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Numerical values of the zeros and extremal points are given for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n less-than-over-equals 10"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≦<!-- ≦ --></mml:mo> <mml:mn>10</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">n \leqq 10</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.
Action | Title | Year | Authors |
---|---|---|---|
+ PDF Chat | A minimal decay rate for solutions of stable $n$th order homogeneous differential equations with constant coefficients | 1975 |
David W. Kammler |