The equation of Ramanujan-Nagell and [š‘¦Ā²]

Type: Article

Publication Date: 1973-01-01

Citations: 2

DOI: https://doi.org/10.1090/s0002-9939-1973-0327725-4

Abstract

By arithmetizing Leviā€™s constructive test for membership in [<inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-bracket y squared right-bracket"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">[</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>y</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">]</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">[{y^2}]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>] we have translated the questions of whether a given power product is in [<inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-bracket y squared right-bracket"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">[</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>y</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">]</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">[{y^2}]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>] to determining whether a certain product of matrices is the zero matrix. This leads to number-theoretic problems, including the diophantine equations of the title <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2 Superscript n Baseline minus 7 equals x squared"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:mo>āˆ’<!-- āˆ’ --></mml:mo> <mml:mn>7</mml:mn> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>x</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{2^n} - 7 = {x^2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ A formula and a congruence for Ramanujanā€™s šœ-function 2005 Matthew A. Papanikolas
+ PDF Chat On the generalized Ramanujan-Nagell equation š‘„Ā²-š·=2āæāŗĀ² 1992 Mao Hua Le
+ New congruence properties for Ramanujanā€™s šœ™ function 2021 Ernest X. W. Xia
+ Yet another proof of Ramanujanā€™s ā‚šœ“ā‚ sum 2022 Katsuhisa Mimachi
+ PDF Chat A simple proof of Ramanujanā€™s ā‚šœ“ā‚ sum 1977 Mourad E. H. Ismail
+ A short proof of Ramanujan's famous <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mrow /><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>Ļˆ</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:math> summation formula 2004 Song Heng Chan
+ PDF Chat Elementary proof of a formula of Ramanujan 1984 Robert L. Lamphere
+ Ramanujan-type formulae for 1/šœ‹: A second wind? 2008 Wadim Zudilin
+ PDF Chat A formula for Ramanujanā€™s tau function 1984 John A. Ewell
+ PDF Chat Note on the distribution of Ramanujanā€™s tau function 1970 D. H. Lehmer
+ The <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mi>t</mml:mi></mml:math>-coefficient method to partial theta function identities and Ramanujanā€™s <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" display="inline" overflow="scroll"><mml:msub><mml:mrow /><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>Ļˆ</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub></ā€¦ 2012 X.R. Ma
+ Ramanujan's Place in the World of Mathematics 2012 Krishnaswami Alladi
+ Ramanujan's Place in the World of Mathematics 2021 Krishnaswami Alladi
+ Ramanujanā€™s congruences 2020 Warren P. Johnson
+ Algebraic š¾-theory of š‘‡š»š»(š”½_{š•”}) 2022 Haldun ƖzgĆ¼r Bayındır
Tasos Moulinos
+ The Ramanujan Journal 2013
+ The sixth, eighth, ninth, and tenth powers of Ramanujanā€™s theta function 1999 Scott Ahlgren
+ PDF Chat Congruences for Ramanujan's Ļ† function 2012 Song Heng Chan
+ The Idea of Ramanujan 2016 Ken Ono
Amir D. Aczel
+ PDF Chat A Product of Theta-Functions Analogous to Ramanujan's Remarkable Product of Theta-Functions and Applications 2012 Nipen Saikia