Estimating Multinomial Logit Model with Multicollinear Data

Type: Article

Publication Date: 2010-03-15

Citations: 21

DOI: https://doi.org/10.3923/ajms.2010.93.101

Abstract

The multinomial model is used to study the dependence relationship between a categorical response variable with more than two categories and a set of explicative variables.In presence of multicollinearity, the estimation of the multinomial model parameters becomes inaccurate.To solve this problem we develop an extension of Principal Component Logistic Regression (PCLR), model proposed by Aguilera et al. (2006).Finally a case study illustrates the advantages of the method.

Locations

  • Asian Journal of Mathematics & Statistics - View
  • CiteSeer X (The Pennsylvania State University) - View - PDF

Similar Works

Action Title Year Authors
+ Estimating multinomial logit model with multicollinear data 2008 Ida Camminatiello
Antonio Lucadamo
+ Multinomial Logistic Regression 2016 Bryan E. Denham
+ Multinomial Regression 2020
+ PDF Chat Using principal components for estimating logistic regression with high-dimensional multicollinear data 2005 Ana M. Aguilera
Manuel Escabias
Mariano J. Valderrama
+ Regression with a Polytomous Dependent Variable Regression with a Polytomous Dependent Variable 2009 John G. Orme
Terri Combs‐Orme
+ A note on the estimation of the multinomial logistic model with correlated responses in SAS 2007 Oliver Kuß
Dale McLerran
+ CONDITIONAL AND MULTINOMIAL LOGITS AS BINARY LOGIT REGRESSIONS 2011 Stan Lipovetsky
+ PDF Chat Inferential Tools for Assessing Dependence Across Response Categories in Multinomial Models with Discrete Random Effects 2024 Chiara Masci
Francesca Ieva
Anna Maria Paganoni
+ Multicollinearity And Logistic Regression. 1979 Robert L. Schaefer
+ A warning concerning the estimation of multinomial logistic models with correlated responses in SAS 2012 Mark de Rooij
Hailemichael M. Worku
+ Bivariate multinomial models 2014 Bingrui Sun
+ PRINCIPAL COMPONENT REGRESSION REVISITED 2011 Liqiang Ni
+ The Effect of Multicollinearity on Prediction in Regression Models 2018 Daniel J. Mundfrom
Michelle DePoy Smith
Lisa Kay
+ PDF Chat Logistic Regression with Categorical Dependent Variable 2007 Iva Pecáková
+ PDF Chat Trinomial Response Modeling in One Logit Regression 2015 Stan Lipovetsky
+ Estimation of the multinomial logit model with random effects 2003 Nikolaj Malchow‐Møller
Michael Svarer
+ PDF Chat An application with multinomial logistic regression analysis<p>Multinomiyal logistik regresyon analizi ile bir uygulama 2015 Sadi Elasan
Sıddık Keskin
+ Chi-Square Orthogonal Components for Assessing Goodness-of-fit of Multidimensional Multinomial Data 2011 Jelena Milovanović
+ PDF Chat Adequacy of Multinomial Logit Model with Nominal Responses over Binary Logit Model 2011 Susanta K. Sarkar
Habshah Midi
Sohel Rana
+ PDF Chat An Application on Multinomial Logistic Regression Model 2012 Abdalla EL-HABIL