Quantum Hall effect and the relative index for projections

Type: Article

Publication Date: 1990-10-22

Citations: 55

DOI: https://doi.org/10.1103/physrevlett.65.2185

Abstract

We define the relative index, Index(P,Q), for a pair of infinite-dimensional projections on a Hilbert space to be the integer that is the natural generalization of dim(P)-dim(Q) in finite-dimensional vector spaces. We show that the Hall conductance for independent electrons in the plane is the relative index where P and Q project on the states below the Fermi energy for Hamiltonians that differ by a quantum flux and the Fermi energy is appropriately placed. This approach is closely related to, and sheds light on, Bellissard's interpretation of the Hall conductance as an index.

Locations

  • Physical Review Letters - View
  • CaltechAUTHORS (California Institute of Technology) - View - PDF
  • PubMed - View

Similar Works

Action Title Year Authors
+ PDF Chat Local Commuting Projector Hamiltonians and the Quantum Hall Effect 2019 Anton Kapustin
Lukasz Fidkowski
+ Fock space: A bridge between Fredholm index and the quantum Hall effect 2024 Guo Chuan Thiang
Jingbo Xia
+ Off-Diagonal Long-Range Order and Flux Quantization 1996
+ PDF Chat INTERACTING QUANTUM TOPOLOGIES AND THE QUANTUM HALL EFFECT 2008 A. P. Balachandran
Kumar S. Gupta
S. Kürkçüoǧlu
+ PDF Chat Generalized quantum Hall projection Hamiltonians 2007 Steven H. Simon
E. H. Rezayi
Nigel R. Cooper
+ PDF Chat Rational indices for quantum ground state sectors 2021 Sven Bachmann
Alex Bols
Wojciech De Roeck
Martin Fraas
+ PDF Chat Quantum Hall Effect and Langlands Program 2018 Kazuki Ikeda
+ PDF Chat Universal charge conductance at Abelian--non-Abelian quantum Hall interfaces 2024 Misha Yutushui
Ady Stern
David F. Mross
+ Entanglement Spectroscopy and its Application to the Quantum Hall Effects 2015 N. Regnault
+ The composite fermion theory revisited: a microscopic derivation without Landau level projection 2022 Bo Yang
+ On the Quantization of Hall Currents in Presence of Disorder 2006 Jean‐Michel Combes
François Germinet
Peter D. Hislop
+ Real-space entanglement spectra of projected fractional quantum Hall states using Monte Carlo methods 2022 Abhishek Anand
G J Sreejith
+ PDF Chat Position-Momentum Duality and Fractional Quantum Hall Effect in Chern Insulators 2015 Martin Claassen
Ching Hua Lee
Ronny Thomale
Xiao-Liang Qi
Thomas Devereaux
+ PDF Chat Composite fermion theory: A microscopic derivation without Landau level projection 2022 Bo Yang
+ PDF Chat Topological Quantization of Fractional Quantum Hall Conductivity 2022 J. Miller
M. A. Zubkov
+ PDF Chat Real-space entanglement spectra of lowest Landau level projected fractional quantum Hall states using Monte Carlo methods 2023 Abhishek Anand
G. J. Sreejith
+ PDF Chat Bipartite entanglement entropy in fractional quantum Hall states 2007 O. S. Zozulya
Masudul Haque
Kareljan Schoutens
E. H. Rezayi
+ PDF Chat Gauge-invariant projector calculus for quantum state geometry and applications to observables in crystals 2024 Johannes Mitscherling
Alexander Avdoshkin
Joel E. Moore
+ Path integrals and quantum computing 2023 David Mumford
+ PDF Chat Tutorial: From Topology to Hall Effects -- Implications of Berry Phase Physics 2024 Nico Sprinkart
Elke Scheer
Angelo Di Bernardo

Works Cited by This (0)

Action Title Year Authors