On the quantitative unit sum number problem–-an application of the subspace theorem

Type: Article

Publication Date: 2008-01-01

Citations: 12

DOI: https://doi.org/10.4064/aa133-4-1

Locations

  • Acta Arithmetica - View

Similar Works

Action Title Year Authors
+ PDF Chat On the quantitative subspace theorem 2010 Jan‐Hendrik Evertse
+ An improvement of the quantitative subspace theorem 1996 Jan‐Hendrik Evertse
+ A quantitative Balian-Low theorem for higher dimensions 2016 Faruk Temur
+ PDF Chat A quantitative Doignon-Bell-Scarf theorem 2016 Iskander Aliev
Robert Bassett
Jesús A. De Loera
Quentin Louveaux
+ A quantitative form of Faber–Krahn inequality 2017 Nicola Fusco
Yi Ru‐Ya Zhang
+ PDF Chat On the Reinhardt-Mahler Theorem 1969 Rajinder Jeet Hans
+ The Kallman-Rota inequality; a survey 2003 W. N. Everitt
Anton Zettl
+ On the dimensional Brunn-Minkowski inequality 2018 Galyna V. Livshyts
+ On an Analog to Minkowski’s Lattice Point Theorem 1981 J. M. Wills
+ On the Orlicz Minkowski problem for logarithmic capacity 2022 Zejun Hu
Hai Li
+ On the Nadler-Quinn problem 2017 Ana Anušić
Henk Bruin
Jernej Činč
+ Multivariate spectrum approximation in the Hellinger distance 2008 Federico Ramponi
Augusto Ferrante
Michele Pavon
+ Extension of the Hilbert-Samuel Theorem 2017 Henri Dichi
+ PDF Chat On the quantitative impact of the Schechter-Valle theorem 2011 Michael Duerr
M. Lindner
Alexander Merle
+ PDF Chat A quantitative version of the Gidas-Ni-Nirenberg Theorem 2024 Giulio Ciraolo
Matteo Cozzi
Matteo Perugini
Luigi Pollastro
+ PDF Chat A Discrete Form of the Beckman-Quarles Theorem 1997 Apoloniusz Tyszka
+ On a generalization of the spectral Mantel’s theorem 2023 Chunmeng Liu
Changjiang Bu
+ A Lp Brunn-Minkowski Theory for Logarithmic Capacity 2020 Zhengmao Chen
+ An Extension Of Kantorovich Inequality 2005 Saichi Izumino
Masahiro Nakamura
+ The Discrete Orlicz-Minkowski Problem for p-Capacity 2022 Lewen Ji
Zhihui Yang