Smoothing effects of Schrödinger evolution groups on Riemannian manifolds

Type: Article

Publication Date: 1996-03-01

Citations: 90

DOI: https://doi.org/10.1215/s0012-7094-96-08228-9

Locations

  • Duke Mathematical Journal - View

Similar Works

Action Title Year Authors
+ Smoothing effects and dispersion of singularities for the Schrödinger evolution group 1990 徹 小澤
+ Smoothing effect for regularized Schrödinger equation on compact manifolds 2008 Lassaad Aloui
+ Smoothing effects and dispersion of singularities for the Schr�dinger evolution group 1990 Tohru Ozawa
+ Smoothing effect in Gevrey classes for Schrodinger equations 2003 Kunihiko Kajitani
+ Smoothing effect in gevrey classes for Schrödinger equations II 1999 Kunihiko Kajitani
+ Smoothing effects for Schrödinger evolution equation and global behavior of geodesic flow 2000 Shin-ichi Doi
+ ON SMOOTHING PROPERTIES OF SCHRODINGER SEMIGROUPS 1996 Jang Lee-Chae.
+ Smoothing effect in Gevrey classes for Schrodinger equations (Structure of Solutions for Partial Differential Equations) 1998 邦彦 梶谷
+ Smoothing effect in Gevrey classes for Schrodinger equations (Structure of Solutions for Partial Differential Equations) 1998 Kunihiko Kajitani
+ Regularization of Schrödinger groups and semigroups 2012 В. Ж. Сакбаев
O. G. Smolyanov
+ A smoothing property of Schrödinger equations along the sphere 2003 Mitsuru Sugimoto
+ Smoothing operators and $\mathcal{C}^*$-algebras for infinite dimensional Lie groups 2017 Karl‐Hermann Neeb
Christoph Zellner
Hadi Salmasian
+ On pseudo-differential operators and smoothness of special Lie-group representations 1979 H. O. Cordes
+ PDF Chat Smoothing metrics on closed Riemannian manifolds through the Ricci flow 2011 Yunyan Yang
+ The Schrodinger-Type Equation on Higher Dimensional Riemannian Manifolds 1992 礼二 今野
祐子 飯山
亜希子 森谷
+ Global smoothing properties of generalized Schrödinger equations 1998 Mitsuru Sugimoto
+ PDF Chat Berry–Esseen Smoothing Inequality for the Wasserstein Metric on Compact Lie Groups 2021 Bence Borda
+ Commutator methods and a smoothing property of the Schr�dinger evolution group 1986 Arne Jensen
+ Gevrey-modulation spaces and smoothing effect for the nonlinear Schrödinger equations 2017 Gaku Hoshino
+ Smoothing effect for the Schrödinger evolution equations with electric fields 1990 Tohru Ozawa