Density functional of a two-dimensional gas of dipolar atoms: Thomas-Fermi-Dirac treatment

Type: Article

Publication Date: 2011-05-25

Citations: 21

DOI: https://doi.org/10.1103/physreva.83.052517

Abstract

We derive the density functional for the ground-state energy of a two-dimensional, spin-polarized gas of neutral fermionic atoms with magnetic-dipole interaction, in the Thomas-Fermi-Dirac approximation. For many atoms in a harmonic trap, we give analytical solutions for the single-particle spatial density and the ground-state energy, in dependence on the interaction strength, and we discuss the weak-interaction limit that is relevant for experiments. We then lift the restriction of full spin polarization and account for a time-independent inhomogeneous external magnetic field. The field strength necessary to ensure full spin polarization is derived.

Locations

  • Physical Review A - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Thomas–Fermi–von Weizsäcker theory for a harmonically trapped, two-dimensional, spin-polarized dipolar Fermi gas 2013 Brandon P. van Zyl
E. Zaremba
P. Pisarski
+ PDF Chat Phase-space deformation of a trapped dipolar Fermi gas 2008 Takahiko Miyakawa
Takaaki Sogo
Han Pu
+ PDF Chat Thermodynamics and coherence of a trapped dipolar Fermi gas 2010 D. Baillie
P. B. Blakie
+ PDF Chat Finite-temperature analysis of a quasi-two-dimensional dipolar gas 2012 Christopher Ticknor
+ PDF Chat Semiclassical theory of trapped fermionic dipoles 2001 Krzysztof Góral
Berthold‐Georg Englert
Kazimierz Rza̧żewski
+ One-dimensional multicomponent Fermi gas in a trap: quantum Monte Carlo study 2016 N.M. Matveeva
G. E. Astrakharchik
+ PDF Chat Microscopic description of anisotropic low-density dipolar Bose gases in two dimensions 2011 A. Macia
F. Mazzanti
J. Boronat
Robert E. Zillich
+ PDF Chat Three interacting atoms in a one-dimensional trap: a benchmark system for computational approaches 2014 Pino D’Amico
Massimo Rontani
+ PDF Chat Simple Analytical Particle and Kinetic Energy Densities for a Dilute Fermionic Gas in a<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">d</mml:mi></mml:math>-Dimensional Harmonic Trap 2001 M. Brack
Brandon P. van Zyl
+ PDF Chat Pseudopotential treatment of two aligned dipoles under external harmonic confinement 2007 Krittika Kanjilal
John L. Bohn
D. Blume
+ PDF Chat Collective excitations of a harmonically trapped, two-dimensional, spin-polarized dipolar Fermi gas in the hydrodynamic regime 2014 Brandon P. van Zyl
E. Zaremba
Joseph Towers
+ PDF Chat Beyond mean-field low-lying excitations of dipolar Bose gases 2012 Aristeu R. P. Lima
Axel Pelster
+ PDF Chat Anisotropic potential immersed in a dipolar Bose-Einstein condensate 2024 Neelam Shukla
Artem G. Volosniev
J. R. Armstrong
+ PDF Chat Effective 3-Body Interaction for Mean-Field and Density-Functional Theory 2010 Alexandros Gezerlis
G. F. Bertsch
+ PDF Chat Analysis of two and three dipolar bosons in a spherical harmonic trap 2016 C. J. Bradly
Harry M. Quiney
A. Martin
+ Efficient variational approach to the Fermi polaron problem in two dimensions, both in and out of equilibrium 2022 Yi-Fan Qu
Pavel E. Dolgirev
Eugene Demler
Tao Shi
+ PDF Chat Two-body problem of impurity atoms in dipolar Fermi gas 2024 Eiji Nakano
Takahiko Miyakawa
Hiroyuki Yabu
+ PDF Chat Component separation of two-component fermion clouds in a spin-dependent external potential by spin-density-functional theory 2013 Gao Xianlong
+ PDF Chat Three attractively interacting fermions in a harmonic trap: Exact solution, ferromagnetism, and high-temperature thermodynamics 2010 Xia-Ji Liu
Hui Hu
P. D. Drummond
+ PDF Chat Strong-coupling ansatz for the one-dimensional Fermi gas in a harmonic potential 2015 Jesper Levinsen
Pietro Massignan
G. M. Bruun
Meera M. Parish

Works That Cite This (16)

Action Title Year Authors
+ PDF Chat Kohn-Sham theory of a rotating dipolar Fermi gas in two dimensions 2015 Francesco Ancilotto
+ PDF Chat Systematic corrections to the Thomas–Fermi approximation without a gradient expansion 2018 Thanh Tri Chau
Jun Hao Hue
Martin-Isbjörn Trappe
Berthold‐Georg Englert
+ PDF Chat Thomas–Fermi–von Weizsäcker theory for a harmonically trapped, two-dimensional, spin-polarized dipolar Fermi gas 2013 Brandon P. van Zyl
E. Zaremba
P. Pisarski
+ PDF Chat Airy-averaged gradient corrections for two-dimensional fermion gases 2017 Martin-Isbjörn Trappe
Yink Loong Len
Hui Khoon Ng
Berthold‐Georg Englert
+ PDF Chat Self-consistent field theory of polarised Bose-Einstein condensates: dispersion of collective excitations 2013 Pavel A. Andreev
L. S. Kuz’menkov
+ PDF Chat Collective excitations of a harmonically trapped, two-dimensional, spin-polarized dipolar Fermi gas in the hydrodynamic regime 2014 Brandon P. van Zyl
E. Zaremba
Joseph Towers
+ PDF Chat Testing the nonlocal kinetic energy functional of an inhomogeneous, two-dimensional degenerate Fermi gas within the average density approximation 2015 Joseph Towers
Brandon P. van Zyl
W. Kirkby
+ PDF Chat Kohn-Sham approach to Fermi gas superfluidity: The bilayer of fermionic polar molecules 2016 Francesco Ancilotto
+ PDF Chat Ordered phases in a bilayer system of dipolar fermions 2016 Brandon P. van Zyl
W. G. Ferguson
+ PDF Chat Leading gradient correction to the kinetic energy for two-dimensional fermion gases 2016 Martin-Isbjörn Trappe
Yink Loong Len
Hui Khoon Ng
Cord A. Müller
Berthold‐Georg Englert

Works Cited by This (16)

Action Title Year Authors
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>p</mml:mi></mml:math>-Wave Interactions in Low-Dimensional Fermionic Gases 2005 Kenneth Günter
Thilo Stöferle
Henning Moritz
Michael Köhl
Tilman Esslinger
+ PDF Chat Pure Gas of Optically Trapped Molecules Created from Fermionic Atoms 2003 Selim Jochim
M. Bartenstein
A. Altmeyer
G. Hendl
Cheng Chin
Johannes Hecker Denschlag
Rudolf Grimm
+ PDF Chat Many-body physics with ultracold gases 2008 Immanuel Bloch
Jean Dalibard
W. Zwerger
+ PDF Chat Doping a Mott insulator: Physics of high-temperature superconductivity 2006 Patrick A. Lee
Naoto Nagaosa
Xiao-Gang Wen
+ PDF Chat Production of a Fermi gas of atoms in an optical lattice 2003 Giovanni Carlo Modugno
Francesca Ferlaino
R. Heidemann
G. Roati
M. Inguscio
+ PDF Chat Simulation and Detection of Dirac Fermions with Cold Atoms in an Optical Lattice 2007 Shi-Liang Zhu
Baigeng Wang
L.-M. Duan
+ PDF Chat Crossover from 2D to 3D in a Weakly Interacting Fermi Gas 2011 Paul Dyke
E. D. Kuhnle
S. Whitlock
Hui Hu
Manfred J. Mark
Sascha Hoinka
Marcus Lingham
Peter Hannaford
Chris Vale
+ PDF Chat Berezinskii-Kosterlitz-Thouless transition in a trapped quasi-two-dimensional Fermi gas near a Feshbach resonance 2008 Wei Zhang
Guin-Dar Lin
L.-M. Duan
+ PDF Chat Theory of Bose-Einstein condensation in trapped gases 1999 F. Dalfovo
S. Giorgini
Лев П. Питаевский
S. Stringari
+ PDF Chat Bose-Einstein condensation with magnetic dipole-dipole forces 2000 Krzysztof Góral
Kazimierz Rza̧żewski
Tilman Pfau