Lower bounds on Ricci flow invariant curvatures and geometric applications

Type: Article

Publication Date: 2013-06-28

Citations: 3

DOI: https://doi.org/10.1515/crelle-2013-0042

Abstract

Abstract We consider Ricci flow invariant cones 𝒞 in the space of curvature operators lying between the cones “nonnegative Ricci curvature” and “nonnegative curvature operator”. Assuming some mild control on the scalar curvature of the Ricci flow, we show that if a solution to the Ricci flow has its curvature operator which satisfies <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mi>R</m:mi> <m:mo>+</m:mo> <m:mi>ε</m:mi> <m:mi>I</m:mi> <m:mo>∈</m:mo> <m:mi>𝒞</m:mi> </m:mrow> </m:math> $\textup {R}+\varepsilon \textup {I}\in \mathcal {C}$ at the initial time, then it satisfies <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mi>R</m:mi> <m:mo>+</m:mo> <m:mi>K</m:mi> <m:mi>ε</m:mi> <m:mi>I</m:mi> <m:mo>∈</m:mo> <m:mi>𝒞</m:mi> </m:mrow> </m:math> $\textup {R}+K\varepsilon \textup {I}\in \mathcal {C}$ on some time interval depending only on the scalar curvature control. This allows us to link Gromov–Hausdorff convergence and Ricci flow convergence when the limit is smooth and <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mi>R</m:mi> <m:mo>+</m:mo> <m:mi>I</m:mi> <m:mo>∈</m:mo> <m:mi>𝒞</m:mi> </m:mrow> </m:math> $\textup {R}+\textup {I}\in \mathcal {C}$ along the sequence of initial conditions. Another application is a stability result for manifolds whose curvature operator is almost in 𝒞. Finally, we study the case where 𝒞 is contained in the cone of operators whose sectional curvature is nonnegative. This allows us to weaken the assumptions of the previously mentioned applications. In particular, we construct a Ricci flow for a class of (not too) singular Alexandrov spaces.

Locations

  • arXiv (Cornell University) - View - PDF
  • CiteSeer X (The Pennsylvania State University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • Journal für die reine und angewandte Mathematik (Crelles Journal) - View

Similar Works

Action Title Year Authors
+ Lower bounds on Ricci flow invariant curvatures and geometric applications 2011 Tom L. Richard
+ PDF Chat Lower bounds on Ricci flow invariant curvatures and geometric applications. 2011 Thomas Richard
+ A note on Ricci flow with Ricci curvature bounded below 2015 Xiuxiong Chen
Fang Yuan
+ Convergence of Ricci flows with bounded scalar curvature 2016 Richard H. Bamler
+ Convergence of Ricci flows with bounded scalar curvature 2016 Richard H. Bamler
+ PDF Chat Convergence of Ricci flows with bounded scalar curvature 2018 Richard H. Bamler
+ PDF Chat Positive intermediate curvatures and Ricci flow 2024 David González-Álvaro
Masoumeh Zarei
+ PDF Chat A local curvature estimate for the Ricci flow 2016 Brett Kotschwar
Ovidiu Munteanu
Jiaping Wang
+ A local curvature estimate for the Ricci flow 2015 Brett Kotschwar
Ovidiu Munteanu
Jiaping Wang
+ On the conditions to extend Ricci flow(III) 2011 Xiuxiong Chen
Bing Wang
+ The Ricci flow under almost non-negative curvature conditions 2017 Richard H. Bamler
Esther Cabezas-Rivas
Burkhard Wilking
+ The Ricci flow under almost non-negative curvature conditions 2017 Richard H. Bamler
Esther Cabezas-Rivas
Burkhard Wilking
+ PDF Chat Curvature estimates for the Ricci flow II 2007 Rugang Ye
+ Curvature Estimates for the Ricci Flow II 2005 Rugang Ye
+ PDF Chat Curvature estimates for the Ricci flow I 2008 Rugang Ye
+ Weak scalar curvature lower bounds along Ricci flow 2021 Wenshuai Jiang
Weimin Sheng
Huaiyu Zhang
+ Compactness properties of Ricci flows with bounded scalar curvature 2015 Richard H. Bamler
+ PDF Chat Local curvature estimates for the Laplacian flow 2021 Yi Li
+ PDF Chat Ricci flow without upper bounds on the curvature and the geometry of some metric spaces. 2012 Tom L. Richard
+ PDF Chat Intermediate Ricci Curvatures and Gromov’s Betti number bound 2023 Philipp Reiser
David J. Wraith