Simple Principal Components

Type: Article

Publication Date: 2000-12-01

Citations: 124

DOI: https://doi.org/10.1111/1467-9876.00204

Abstract

SUMMARY We introduce an algorithm for producing simple approximate principal components directly from a variance–covariance matrix. At the heart of the algorithm is a series of ‘simplicity preserving’ linear transformations. Each transformation seeks a direction within a two-dimensional subspace that has maximum variance. However, the choice of directions is limited so that the direction can be represented by a vector of integers whenever the subspace can also be represented by vector if integers. The resulting approximate components can therefore always be represented by integers. Furthermore the elements of these integer vectors are often small, particularly for the first few components. We demonstrate the performance of this algorithm on two data sets and show that good approximations to the principal components that are also clearly simple and interpretable can result.

Locations

  • Journal of the Royal Statistical Society Series C (Applied Statistics) - View - PDF

Similar Works

Action Title Year Authors
+ Simple principal components. 2006 Linjuan Sun
+ Principal Components 2005 Bernard D. Flury
+ Principal Components 2012 Marc Hallin
Siegfried Hörmann
+ Principal Components 2014 Bernard D. Flury
+ Principal component analysis 2009 Aapo Hyvärinen
+ Sparse Principal Components Analysis: a Tutorial 2021 Giovanni Maria Merola
+ PDF Chat Principal Component Analysis 2021 Felipe L. Gewers
Gustavo Rodrigues Ferreira
Henrique Ferraz de Arruda
Filipi N. Silva
César H. Comin
Diego R. Amancio
Luciano da Fontoura Costa
+ Principal Component Analysis 2014 Ian T. Jolliffe
+ Principal Component Analysis 2005 Ian T. Jolliffe
+ Principal Components Analysis 2017 Sven Hilbert
Markus Bühner
+ Principal Components Analysis 2019 Wolfgang Karl Härdle
Léopold Simar
+ Principal Components Analysis 2020 Sven Hilbert
Markus Bühner
+ Principal Components Analysis 2008 Craig Syms
+ Principal Components Analysis 2018 Craig Syms
+ Principal Components Analysis 2015 Wolfgang Karl Härdle
Léopold Simar
+ Principal Components Analysis 2012 Wolfgang Karl Härdle
Léopold Simar
+ PDF Chat Robust Sparse Principal Component Analysis 2012 Christophe Croux
Peter Filzmoser
Heinrich Fritz
+ Robust sparse principal component analysis 2014 Christophe Croux
Peter Filzmoser
Heinrich Fritz
+ Principal components analysis. 2021 Donаld L. J. Quicke
Buntikа А. Butcher
Rachel Kruft Welton
+ Principal components analysis. 2021 Donаld L. J. Quicke
Buntikа А. Butcher
Rachel Kruft Welton

Works That Cite This (58)

Action Title Year Authors
+ A Direct Formulation for Sparse PCA Using Semidefinite Programming 2004 Alexandre d’Aspremont
Laurent El Ghaoui
Michael I. Jordan
Gert Lanckriet
+ A new principal component analysis by particle swarm optimization with an environmental application for data science 2021 John A. Ramirez-Figueroa
Carlos Martin‐Barreiro
Ana Belén Nieto Librero
Víctor Leiva
Purificación Galindo‐Villardón
+ Comparative analysis of principal components can be misleading 2014 Josef C. Uyeda
Daniel S. Caetano
Matthew W. Pennell
+ Dealing with the biased effects issue when handling huge datasets: the case of INVALSI data 2015 Emanuela Raffinetti
Isabella Romeo
+ PDF Chat Sparse Decomposition and Modeling of Anatomical Shape Variation 2007 Karl Sjöstrand
Egill Rostrup
Charlotte Ryberg
Rasmus Larsen
Colin Studholme
Hansjoerg Baezner
José M. Ferro
Franz Fazekas
Leonardo Pantoni
Domenico Inzitari
+ PDF Chat Sparse principal component analysis with measurement errors 2016 Jianhong Shi
Weixing Song
+ A 50-year personal journey through time with principal component analysis 2021 Ian T. Jolliffe
+ PDF Chat Clustering Disjoint HJ-Biplot: A new tool for identifying pollution patterns in geochemical studies 2017 Ana Belén Nieto Librero
Carlos Sierra
Purificación Vicente‐Galindo
Omar Ruíz-Barzola
Purificación Galindo‐Villardón
+ Hausman Principal Component Analysis 2006 Vartan Choulakian
Luigi D’Ambra
Biagio Simonetti
+ Comment 2016 Norman R. Swanson