Type: Article
Publication Date: 1991-01-01
Citations: 67
DOI: https://doi.org/10.1090/s0002-9939-1991-1055774-0
We show that the twofold symmetric product of a nonhyperelliptic, nonbielliptic curve does not contain any elliptic curves. Applying a theorem of Faltings, we conclude that such a curve defined over a number field <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has only finitely many points over all quadratic extensions of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We illustrate our theory with the modular curves <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X 0 left-parenthesis upper N right-parenthesis comma upper X 1 left-parenthesis upper N right-parenthesis comma upper X left-parenthesis upper N right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>X</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>X</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>,</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{X_0}(N),{X_1}(N),X(N)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.