Bielliptic curves and symmetric products

Type: Article

Publication Date: 1991-01-01

Citations: 67

DOI: https://doi.org/10.1090/s0002-9939-1991-1055774-0

Abstract

We show that the twofold symmetric product of a nonhyperelliptic, nonbielliptic curve does not contain any elliptic curves. Applying a theorem of Faltings, we conclude that such a curve defined over a number field <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has only finitely many points over all quadratic extensions of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We illustrate our theory with the modular curves <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X 0 left-parenthesis upper N right-parenthesis comma upper X 1 left-parenthesis upper N right-parenthesis comma upper X left-parenthesis upper N right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>X</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>X</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>,</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{X_0}(N),{X_1}(N),X(N)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Bielliptic Curves and Symmetric Products 1991 Joe Harris
Joe H. Silverman
+ Bielliptic modular curves <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msubsup><mml:mrow><mml:mi>X</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msubsup><mml:mo stretchy="false">(</mml:mo><mml:mi>N</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> 2017 Daeyeol Jeon
+ Quadratic points on bielliptic modular curves 2022 Filip Najman
Borna Vukorepa
+ Bielliptic modular curves <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msubsup><mml:mrow><mml:mi>X</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mo>⁎</mml:mo></mml:mrow></mml:msubsup><mml:mo stretchy="false">(</mml:mo><mml:mi>N</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> 2020 Francesc Bars
Josep González
+ From Picard groups of hyperelliptic curves to class groups of quadratic fields 2020 Jean Gillibert
+ Hyperelliptic curves over 𝔽₂ of every 2-rank without extra automorphisms 2005 Hui June Zhu
+ A positive proportion of locally soluble hyperelliptic curves over ℚ have no point over any odd degree extension 2016 Manjul Bhargava
Benedict H. Gross
Xiaoheng Wang
+ PDF Chat $p$-adic hyperbolic planes and modular forms 1994 John A. Rhodes
+ Constructing hyperelliptic curves with surjective Galois representations 2019 Samuele Anni
Vladimir Dokchitser
+ PDF Chat Symmetric powers of algebraic and tropical curves: A non-Archimedean perspective 2022 Madeline Brandt
Martin Ulirsch
+ Supersingular elliptic curves, theta series and weight two modular forms 2002 Matthew Emerton
+ PDF Chat On a class of elliptic curves with rank at most two 1995 Harvey E. Rose
+ Counting dihedral and quaternionic extensions 2011 Étienne Fouvry
Florian Luca
Francesco Pappalardi
Igor E. Shparlinski
+ Bielliptic quotient modular curves of 𝑋₀(𝑁) 2022 Francesc Bars
Mohamed Kamel
Andreas Schweizer
+ Computing quadratic points on modular curves 𝑋₀(𝑁) 2023 Nikola Adžaga
Timo Keller
Philippe Michaud‐Jacobs
Filip Najman
Ekin Özman
Borna Vukorepa
+ On polyquadratic twists of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mrow><mml:mi>X</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mi>N</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> 2013 Ekin Özman
+ Congruences of elliptic curves arising from nonsurjective mod 𝑁 Galois representations 2022 Sam Frengley
+ An introduction to hyperelliptic curve arithmetic 2016 Renate Scheidler
+ Bielliptic modular curves X1(M,N) 2005 Daeyeol Jeon
Chang Heon Kim
+ Modular properties of elliptic algebras 2024 Alexandru Chirvăsitu
Ryo Kanda
S. Paul Smith