Kinks in dipole chains

Type: Article

Publication Date: 2006-05-15

Citations: 23

DOI: https://doi.org/10.1088/0951-7715/19/6/008

Abstract

It is shown that the topological discrete sine-Gordon system introduced by Speight and Ward models the dynamics of an infinite uniform chain of electric dipoles constrained to rotate in a plane containing the chain. Such a chain admits a novel type of static kink solution which may occupy any position relative to the spatial lattice and experiences no Peierls–Nabarro barrier. Consequently the dynamics of a single kink is highly continuum-like, despite the strongly discrete nature of the model. Static multikinks and kink–antikink pairs are constructed, and it is shown that all such static solutions are unstable. Exact propagating kinks are sought numerically using the pseudo-spectral method, but it is found that none exist, except, perhaps, at very low speed.

Locations

  • Nonlinearity - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Topological discrete kinks 1999 Martin Speight
+ PDF Chat Kink dynamics in a novel discrete sine-Gordon system 1994 Martin Speight
R. S. Ward
+ Kinks in Coulomb’s chains 2012 Juan F. R. Archilla
Yuriy A. Kosevich
M.C.B. Russell
+ Kink ratchets in the Klein-Gordon lattice free of the Peierls-Nabarro potential 2009 Sergey V. Dmitriev
Avinash Khare
Sergey V. Suchkov
+ PDF Chat A discrete $\phi^4$ system without a Peierls - Nabarro barrier 1997 Martin Speight
+ PDF Chat Kinks in the discrete sine-Gordon model with Kac-Baker long-range interactions 2000 Serge F. Mingaleev
Yuri Gaididei
E. Majerníková
S. Shpyrko
+ A modified sine-Gordon theory with static multi-kinks 2023 Chris Halcrow
Renjan Rajan John
N. Anusree
+ PDF Chat Simulation of macroscopic systems with non-vanishing elastic dipole components 2019 Thomas Jourdan
+ PDF Chat Normal form for travelling kinks in discrete Klein–Gordon lattices 2006 Gérard Iooss
Dmitry E. Pelinovsky
+ PDF Chat A modified discrete sine-Gordon model 1995 W. J. Zakrzewski
+ PDF Chat Static Kinks in Chains of Interacting Atoms 2020 Haggai Landa
Cecilia Cormick
Giovanna Morigi
+ PDF Chat Stationary multi-kinks in the discrete sine-Gordon equation 2021 Ross Parker
P. G. Kevrekidis
Alejandro B. Aceves
+ PDF Chat Phonons Scattering Off Discrete Asymmetric Solitons in the Absence of a Peierls-Nabarro Potential 2023 Danial Saadatmand
Aliakbar Moradi Marjaneh
Alidad Askari
H. Weigel
+ Phonons scattering off discrete asymmetric solitons in the absence of a Peierls-Nabarro potential 2023 Danial Saadatmand
Aliakbar Moradi Marjaneh
Alidad Askari
H. Weigel
+ A Frenkel-Kontorova Model with Two Spring Constants: New Phases and Phase Transitions 1996 Bambi Hu
Jian Zhou
+ Collision of ϕ4 kinks free of the Peierls–Nabarro barrier in the regime of strong discreteness 2020 Alidad Askari
Aliakbar Moradi Marjaneh
Zhanna G. Rakhmatullina
Mahdy Ebrahimi Loushab
Danial Saadatmand
Vakhid A. Gani
P. G. Kevrekidis
Sergey V. Dmitriev
+ Kink-antikink interactions in a modified sine-Gordon model 1983 Michel Peyrard
David Campbell
+ PDF Chat Phonons Scattering Off Discrete Asymmetric Solitons in the Absence of a Peierls-Nabarro Potential 2023 Danial Saadatmand
Aliakbar Moradi Marjaneh
Alidad Askari
H. Weigel
+ PDF Chat A new look at the double sine-Gordon kink-antikink scattering 2019 Ekaterina Belendryasova
Vakhid A. Gani
Aliakbar Moradi Marjaneh
Danial Saadatmand
A Askari
+ PDF Chat Multibreathers in Klein–Gordon chains with interactions beyond nearest neighbors 2012 V. Koukouloyannis
P. G. Kevrekidis
Jesús Cuevas–Maraver
Vassilis M. Rothos

Works That Cite This (11)

Action Title Year Authors
+ PDF Chat Discrete nonlinear Schrödinger equations free of the Peierls–Nabarro potential 2006 Sergey V. Dmitriev
P. G. Kevrekidis
Andrey A. Sukhorukov
Nobuhiro YOSHIKAWA
Sachio Takeno
+ PDF Chat Exact static solutions for discrete<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mi>ϕ</mml:mi><mml:mn>4</mml:mn></mml:msup></mml:math>models free of the Peierls-Nabarro barrier: Discretized first-integral approach 2006 Sergey V. Dmitriev
P. G. Kevrekidis
Nobuhiro YOSHIKAWA
D. J. Frantzeskakis
+ PDF Chat On a class of spatial discretizations of equations of the nonlinear Schrödinger type 2006 P. G. Kevrekidis
Sergey V. Dmitriev
Andrey A. Sukhorukov
+ PDF Chat Discrete Variants of the $$\phi ^4$$ Model: Exceptional Discretizations, Conservation Laws and Related Topics 2019 Sergey V. Dmitriev
P. G. Kevrekidis
+ PDF Chat Standard nearest-neighbour discretizations of Klein–Gordon models cannot preserve both energy and linear momentum 2006 Sergey V. Dmitriev
P. G. Kevrekidis
Nobuhiro YOSHIKAWA
+ PDF Chat Comparative study of different discretizations of the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mi>ϕ</mml:mi><mml:mn>4</mml:mn></mml:msup></mml:math>model 2007 Ishani Roy
Sergey V. Dmitriev
P. G. Kevrekidis
Avadh Saxena
+ PDF Chat Discrete nonlinear Schrödinger equations with arbitrarily high-order nonlinearities 2006 Avinash Khare
K. Ø. Rasmussen
Mario Salerno
M. R. Samuelsen
Avadh Saxena
+ Collision of ϕ4 kinks free of the Peierls–Nabarro barrier in the regime of strong discreteness 2020 Alidad Askari
Aliakbar Moradi Marjaneh
Zhanna G. Rakhmatullina
Mahdy Ebrahimi Loushab
Danial Saadatmand
Vakhid A. Gani
P. G. Kevrekidis
Sergey V. Dmitriev
+ PDF Chat High-speed kinks in a generalized discrete<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mi>ϕ</mml:mi><mml:mn>4</mml:mn></mml:msup></mml:mrow></mml:math>model 2008 Sergey V. Dmitriev
Avinash Khare
P. G. Kevrekidis
Avadh Saxena
Ljupčo Hadžievski
+ PDF Chat Exact static solutions to a translationally invariant discrete phi<sup>4</sup>model 2007 Sergey V. Dmitriev
P. G. Kevrekidis
Avinash Khare
Avadh Saxena