Perturbation theory for the Laplacian on automorphic functions

Type: Article

Publication Date: 1992-01-01

Citations: 47

DOI: https://doi.org/10.1090/s0894-0347-1992-1127079-x

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Gamma subset-of PSL left-parenthesis 2 comma double-struck upper R right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext>PSL(2, </mml:mtext> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext>)</mml:mtext> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\Gamma \subset {\text {PSL(2, }}\mathbb {R}{\text {)}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a discrete subgroup with quotient <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Gamma minus upper H"> <mml:semantics> <mml:mrow> <mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi> <mml:mi class="MJX-variant" mathvariant="normal">∖<!-- ∖ --></mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\Gamma \backslash H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of finite volume but not compact. The spectrum of the Laplacian on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L squared"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> automorphic functions is unstable under perturbations; however, it becomes much more manageable when the scattering frequencies are adjoined (with multiplicity equal to the order of the pole of the determinant of the scattering matrix at these points). This augmented set shows up in a natural way in a one-sided version of the Selberg trace formula and is the actual spectrum of the generator of a cut-off wave equation. Applying standard perturbation theory to this operator, it is proved that the augmented spectrum is real analytic in Teichmüller space. The same operator is used to derive Fermi’s Golden Rule in this setting. It turns out that the proper multiplicity to be attached to the Laplacian eigenvalue at <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="one fourth"> <mml:semantics> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>4</mml:mn> </mml:mfrac> <mml:annotation encoding="application/x-tex">\frac {1}{4}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is twice the dimension of cusp forms plus <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="mu equals trace left-bracket normal upper Phi plus upper I right-bracket slash 2"> <mml:semantics> <mml:mrow> <mml:mi>μ<!-- μ --></mml:mi> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext> tr</mml:mtext> </mml:mrow> <mml:mo stretchy="false">[</mml:mo> <mml:mi mathvariant="normal">Φ<!-- Φ --></mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext> + </mml:mtext> </mml:mrow> <mml:mi>I</mml:mi> <mml:mo stretchy="false">]</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext>/2</mml:mtext> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\mu = {\text { tr}}[\Phi {\text { + }}I]{\text {/2}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> ; here <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Phi"> <mml:semantics> <mml:mi mathvariant="normal">Φ<!-- Φ --></mml:mi> <mml:annotation encoding="application/x-tex">\Phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denotes the scattering matrix at this point. It is shown that the generic value of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="mu"> <mml:semantics> <mml:mi>μ<!-- μ --></mml:mi> <mml:annotation encoding="application/x-tex">\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the Teichmüller space of the once punctured torus and the six-times punctured sphere is zero. This is also true of the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="chi"> <mml:semantics> <mml:mi>χ<!-- χ --></mml:mi> <mml:annotation encoding="application/x-tex">\chi</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-twisted spectral problem, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="chi"> <mml:semantics> <mml:mi>χ<!-- χ --></mml:mi> <mml:annotation encoding="application/x-tex">\chi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a character for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Gamma"> <mml:semantics> <mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi> <mml:annotation encoding="application/x-tex">\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Journal of the American Mathematical Society - View - PDF
  • Journal of the American Mathematical Society - View - PDF
  • Journal of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Automorphic Functions 2016
+ A Note on Automorphic Functions 1930 D. P. Dalzell
+ PDF Almost periodic operators in 𝑉𝑁(𝐺) 1990 Ching Chou
+ PDF An analogue of Siegel’s 𝜙-operator for automorphic forms for 𝐺𝐿_{𝑛}(𝑍) 1992 Douglas Grenier
+ PDF Notes on the Theory of Automorphic Functions (continued) 1900 A. C. Dixon
+ PDF Further Note on Automorphic Functions 1891 W. Burnside
+ PDF Functions automorphic on large domains 1973 David A. James
+ PDF The asymptotics of the determinant function for a class of operators 1989 Leonid Friedlander
+ Automorphic L-Functions in the Weight Aspect 2006 O. M. Fomenko
+ PDF Chat A trace formula approach to control theorems for overconvergent automorphic forms 2016 Christian Johansson
+ Möbius randomness law for 𝐺𝐿(𝑚) automorphic 𝐿-functions twisted by additive characters 2022 Yujiao Jiang
Guangshi Lü
Zihao Wang
+ Chapter 10. Functional analysis for automorphic forms 2015
+ PDF The subalgebra of 𝐿¹(𝐴𝑁) generated by the Laplacian 1993 Waldemar Hebisch
+ Resonance of automorphic forms for 𝐺𝐿(3) 2014 Xiumin Ren
Yangbo Ye
+ Proceedings of the Conference on Automorphic Forms and Analytic Number Theory 1990 Ram Murty
+ Automorphic L-Functions 2021 Freydoon Shahidi
+ Expansion of automorphic functions 1984 N. V. Proskurin
+ Laplace Operators on G/K and Automorphic Forms 2018 Philipp Fleig
Henrik P. A. Gustafsson
Axel Kleinschmidt
Daniel Persson
+ PDF Mean value properties of the Laplacian via spectral theory 1984 Robert S. Strichartz
+ PDF Strong multiplicity theorems for 𝐺𝐿(𝑛) 1987 George T. Gilbert