Selfadjointness of the momentum operator with a singular term

Type: Article

Publication Date: 1989-01-01

Citations: 6

DOI: https://doi.org/10.1090/s0002-9939-1989-0984821-8

Abstract

Self-adjointness is shown of the momentum operator <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartSet u element-of upper H Superscript 1 Baseline left-parenthesis bold upper R Superscript 1 Baseline right-parenthesis colon u slash x element-of upper L squared left-parenthesis bold upper R Superscript 1 Baseline right-parenthesis EndSet"> <mml:semantics> <mml:mrow> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mi>u</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> <mml:mo>:</mml:mo> <mml:mi>u</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>x</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\{ u \in {H^1}({{\mathbf {R}}^1}):u/x \in {L^2}({{\mathbf {R}}^1})\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, with domain <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartSet u element-of upper H Superscript 1 Baseline left-parenthesis bold upper R Superscript 1 Baseline right-parenthesis colon u slash x element-of upper L squared left-parenthesis bold upper R Superscript 1 Baseline right-parenthesis EndSet"> <mml:semantics> <mml:mrow> <mml:mo>{</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>u</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> <mml:mo>:</mml:mo> <mml:mi>u</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>x</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:mo>}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\left \{ {u \in {H^1}({{\mathbf {R}}^1}):u/x \in {L^2}({{\mathbf {R}}^1})} \right \}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> when <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="c greater-than 1"> <mml:semantics> <mml:mrow> <mml:mi>c</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">c &gt; 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="c greater-than negative 1"> <mml:semantics> <mml:mrow> <mml:mi>c</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">c &gt; - 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This operator appears in a harmonic oscillator system with the generalized commutation relations by Wigner: <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="i p equals left-bracket x comma upper H right-bracket"> <mml:semantics> <mml:mrow> <mml:mi>i</mml:mi> <mml:mi>p</mml:mi> <mml:mo>=</mml:mo> <mml:mo stretchy="false">[</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>H</mml:mi> <mml:mo stretchy="false">]</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">ip = [x,H]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="minus i x equals left-bracket p comma upper H right-bracket"> <mml:semantics> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mi>i</mml:mi> <mml:mi>x</mml:mi> <mml:mo>=</mml:mo> <mml:mo stretchy="false">[</mml:mo> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>H</mml:mi> <mml:mo stretchy="false">]</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">- ix = [p,H]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for the Hamiltonian <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding="application/x-tex">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and the multiplication operator <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="x"> <mml:semantics> <mml:mi>x</mml:mi> <mml:annotation encoding="application/x-tex">x</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The proof is carried out by generation of a unitary group in terms of ip, based on the Hille-Yosida theorem and Stone’s theorem. The result is applied to the self-adjoitness of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H equals left-parenthesis p squared plus x squared right-parenthesis slash 2"> <mml:semantics> <mml:mrow> <mml:mi>H</mml:mi> <mml:mo>=</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>p</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:mo>+</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>x</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">H = ({p^2} + {x^2})/2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Self-adjointness of the perturbed wave operator on 𝐿²(𝑅ⁿ),𝑛≥2 2004 Mohammed Hichem Mortad
+ PDF Chat Completely seminormal operators with boundary eigenvalues 1973 Kevin F. Clancey
+ A perturbed elementary operator and range-kernel orthogonality 2005 B. P. Duggal
+ 𝑝(𝑥)-Laplacian with indefinite weight 2011 Khaled Kefi
+ When products of selfadjoints are normal 2000 Ernst Albrecht
P. G. Spain
+ PDF Chat Factorization of quasi-differential operators 1991 W. N. Everitt
James S. Muldowney
Neeza Thandi
+ PDF Chat Spectral properties for the magnetization integral operator 1984 Mark J. Friedman
Joseph E. Pasciak
+ PDF Chat The heat equation with a singular potential 1984 Pierre Baras
Jerome A. Goldstein
+ PDF Chat 𝐿²𝑙𝑜𝑐-boundedness for a class of singular Fourier integral operators 1984 A. El Kohen
+ PDF Chat 𝐿^{∞}-BMO boundedness for a singular integral operator 1990 Javad Namazi
+ PDF Chat Selfadjointness of the *-representation generated by the sum of two positive linear functionals 1989 Atsushi Inoue
+ PDF Chat Singular limit of solutions of 𝑢_{𝑡}=Δ𝑢^{𝑚}-𝐴⋅∇(𝑢^{𝑞}/𝑞) as 𝑞→∞ 1995 Kin Ming Hui
+ PDF Chat A note on the integral ∫^{∞}₀ 𝑡^{2𝛼-1}(1+𝑡²) ^{1-𝛼-𝛽}𝐽_{𝜈}(𝑥√(1+𝑡²))𝑑𝑡 1979 M. L. Glasser
+ PDF Chat A right inverse of the Askey-Wilson operator 1995 B. M. Brown
Mourad E. H. Ismail
+ PDF Chat Solving integral equations by 𝐿 and 𝐿⁻¹ operators 1971 Charles Fox
+ PDF Chat Smooth rank one perturbations of selfadjoint operators 1998 Seppo Hassi
Henk de Snoo
A. Willemsma
+ PDF Chat A pointwise spectrum and representation of operators 1998 N. Bertoglio
Servet Martı́nez
Jaime San Martı́n
+ PDF Chat Selfadjointness of ∗-representations generated by positive linear functionals 1985 A. Inoue
+ PDF Chat Flat core properties associated to the 𝑝-Laplace operator 1993 S. Kamin
Laurent Véron
+ PDF Chat Seminormal operators with compact self-commutators 1970 Kevin F. Clancey