Hausdorff dimension of wild fractals

Type: Article

Publication Date: 1992-01-01

Citations: 12

DOI: https://doi.org/10.1090/s0002-9947-1992-1162104-8

Abstract

We show that for every <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="s element-of left-bracket n minus 2 comma n right-bracket"> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mo stretchy="false">[</mml:mo> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy="false">]</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">s \in [n - 2,n]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> there exists a homogeneously embedded wild Cantor set <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C Superscript s"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>C</mml:mi> <mml:mi>s</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{C^s}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R Superscript n Baseline comma n greater-than-or-equal-to 3"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {R}^n, n \geq 3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, of (local) Hausdorff dimension <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="s"> <mml:semantics> <mml:mi>s</mml:mi> <mml:annotation encoding="application/x-tex">s</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Also, it is shown that for every <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="s element-of left-bracket n minus 2 comma n right-bracket"> <mml:semantics> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mo stretchy="false">[</mml:mo> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy="false">]</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">s \in [n - 2,n]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and for any integer <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k not-equals n"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>≠<!-- ≠ --></mml:mo> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">k \ne n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="1 less-than-or-equal-to k less-than-or-equal-to s"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>k</mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>s</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">1 \leq k \leq s</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, there exist everywhere wild <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding="application/x-tex">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-spheres and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding="application/x-tex">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-cells, in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R Superscript n Baseline comma n greater-than-or-equal-to 3"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {R}^n, n \geq 3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, of (local) Hausdorff dimension <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="s"> <mml:semantics> <mml:mi>s</mml:mi> <mml:annotation encoding="application/x-tex">s</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Hausdorff Dimension of Wild Fractals 1992 T. B. Rushing
+ PDF Chat 𝑘-dimensional regularity classifications for 𝑠-fractals 1988 Miguel Ángel Martı́n
Pertti Mattila
+ Sets of minimal Hausdorff dimension for quasiconformal maps 2000 Jeremy T. Tyson
+ Isoperimetric Estimates on Sierpinski Gasket Type Fractals 1999 Robert S. Strichartz
+ PDF Chat A discrete fractal in 𝑍¹₊ 1994 Davar Khoshnevisan
+ PDF Chat Lipscomb’s 𝐿(𝐴) space fractalized in Hilbert’s 𝑙²(𝐴) space 1992 Stephen Lipscomb
James C. Perry
+ Hausdorff measures, dimensions and mutual singularity 2005 Manav Das
+ Hausdorff Dimension 2016 Russell Lyons
Yuval Peres
+ An improved bound on the Hausdorff dimension of Besicovitch sets in ℝ³ 2018 Nets Hawk Katz
Joshua Zahl
+ PDF Chat Continuity of Hausdorff dimension of Julia-Lavaurs sets as a function of the phase 2001 Mariusz Urbański
Michel Zinsmeister
+ Hausdorff dimension of pinned distance sets and the 𝐿²-method 2019 Bochen Liu
+ PDF Chat Nonstandard measure theory–Hausdorff measure 1977 Frank Wattenberg
+ PDF Chat Harmonic analysis of fractal measures induced by representations of a certain 𝐶*-algebra 1993 Palle E. T. Jørgensen
Steen Pedersen
+ A non-Hausdorff model for the complement of a complexified hyperplane arrangement 2007 Nicholas Proudfoot
+ Fractals of two types of enriched <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.svg" display="inline" id="d1e68"><mml:mrow><mml:mo>(</mml:mo><mml:mi>q</mml:mi><mml:mo>,</mml:mo><mml:mi>θ</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math>-Hutchinson–Barnsley operators 2024 Rizwan Anjum
Muhammad Din
Mi Zhou
+ Hausdorff dimension of Cantor sets and polynomial hulls 2005 Burglind Jöricke
+ Hausdorff dimension in graph directed constructions 1988 R. Daniel Mauldin
Stanley C. Williams
+ PDF Chat A Hausdorff measure inequality 1976 Lawrence R. Ernst
Gerald Freilich
+ PDF Chat The Hausdorff dimension of the nondifferentiability set of the Cantor function is [𝑙𝑛(2)/𝑙𝑛(3)]² 1993 R. B. Darst
+ PDF Chat Dimension theory 1973 Abraham Zaks