Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order

Type: Article

Publication Date: 2010-10-26

Citations: 768

DOI: https://doi.org/10.1103/physrevb.82.155138

Abstract

Two gapped quantum ground states in the same phase are connected by an adiabatic evolution which gives rise to a local unitary transformation that maps between the states. On the other hand, gapped ground states remain within the same phase under local unitary transformations. Therefore, local unitary transformations define an equivalence relation and the equivalence classes are the universality classes that define the different phases for gapped quantum systems. Since local unitary transformations can remove local entanglement, the above equivalence/universality classes correspond to pattern of long-range entanglement, which is the essence of topological order. The local unitary transformation also allows us to define a wave function renormalization scheme, under which a wave function can flow to a simpler one within the same equivalence/universality class. Using such a setup, we find conditions on the possible fixed-point wave functions where the local unitary transformations have finite dimensions. The solutions of the conditions allow us to classify this type of topological orders, which generalize the string-net classification of topological orders. We also describe an algorithm of wave function renormalization induced by local unitary transformations. The algorithm allows us to calculate the flow of tensor-product wave functions which are not at the fixed points. This will allow us to calculate topological orders as well as symmetry-breaking orders in a generic tensor-product state.

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • Physical Review B - View

Similar Works

Action Title Year Authors
+ Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order 2010 Xie Chen
Zheng‐Cheng Gu
Xiao-Gang Wen
+ PDF Chat Gapped quantum liquids and topological order, stochastic local transformations and emergence of unitarity 2015 Bei Zeng
Xiao-Gang Wen
+ An Invariant of Topologically Ordered States Under Local Unitary Transformations 2016 Jeongwan Haah
+ PDF Chat Classification of symmetry enriched topological phases with exactly solvable models 2013 Andrej Mesaroš
Ying Ran
+ Layer-by-layer disentangling two-dimensional topological quantum codes 2023 Mohammad Hossein Zarei
Mohsen Rahmani Haghighi
+ PDF Chat Layer-by-layer disentangling two-dimensional topological quantum codes 2023 Mohammad Hossein Zarei
Mohsen Rahmani Haghighi
+ PDF Chat Equivalence of quantum states under local unitary transformations 2005 Shao-Ming Fei
Naihuan Jing
+ PDF Chat Matrix product unitaries: structure, symmetries, and topological invariants 2017 J. I. Cirac
David Pérez-Garcı́a
Norbert Schuch
Frank Verstraete
+ Modular transformations and topological orders in two dimensions 2013 Fangzhou Liu
Zhenghan Wang
Yi‐Zhuang You
Xiao-Gang Wen
+ On local and global equivalence of wave functions in quantum mechanics 1977 Henk Hoogland
+ PDF Chat Symmetry-protected topological entanglement 2017 Iman Marvian
+ PDF Chat Matrix product representation of locality preserving unitaries 2018 Mehmet Şahinoglu
Sujeet K. Shukla
Feng Bi
Xie Chen
+ PDF Chat Matrix Product States: Entanglement, Symmetries, and State Transformations 2019 David Sauerwein
András Molnár
J. I. Cirac
Barbara Kraus
+ Topological Holography: Towards a Unification of Landau and Beyond-Landau Physics 2022 Heidar Moradi
Seyed Faroogh Moosavian
Apoorv Tiwari
+ PDF Chat Symmetric states: local unitary equivalence via stabilizers 2010 Curt D. Cenci
David W. Lyons
Laura M. Snyder
Scott N. Walck
+ PDF Chat Fermionic matrix product states and one-dimensional short-range entangled phases with antiunitary symmetries 2019 Alex Turzillo
Minyoung You
+ PDF Chat Local Unitary Equivalence of Quantum States Based on the Tensor Decompositions of Unitary Matrices 2023 Jing Wang
Xiaoqi Liu
Li Xu
Ming Li
Lei Li
Shu‐Qian Shen
+ PDF Chat Detection of symmetry-protected topological phases in one dimension 2012 Frank Pollmann
Ari M. Turner
+ PDF Chat Tensor product representation of a topological ordered phase: Necessary symmetry conditions 2010 Xie Chen
Bei Zeng
Zheng‐Cheng Gu
Isaac L. Chuang
Xiao-Gang Wen
+ PDF Chat Topological quantum field theory of three-dimensional bosonic Abelian-symmetry-protected topological phases 2016 Peng Ye
Zheng‐Cheng Gu

Works Cited by This (40)

Action Title Year Authors
+ PDF Chat Topological field theory of time-reversal invariant insulators 2008 Xiao‐Liang Qi
Taylor L. Hughes
Shou-Cheng Zhang
+ PDF Chat Tensor Renormalization Group Approach to Two-Dimensional Classical Lattice Models 2007 Michael Levin
Cody P. Nave
+ PDF Chat Translation-symmetry-protected topological orders in quantum spin systems 2009 Su-Peng Kou
Xiao-Gang Wen
+ PDF Chat Stability of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>U</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math>spin liquids in two dimensions 2004 Michael Hermele
T. Senthil
Matthew P. A. Fisher
Patrick A. Lee
Naoto Nagaosa
Xiao-Gang Wen
+ PDF Chat Tensor-entanglement renormalization group approach as a unified method for symmetry breaking and topological phase transitions 2008 Zheng‐Cheng Gu
Michael Levin
Xiao-Gang Wen
+ PDF Chat Gapless fermions and quantum order 2002 Xiao-Gang Wen
A. Zee
+ PDF Chat Spin correlations in the algebraic spin liquid: Implications for high-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mi>c</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>superconductors 2002 Walter Rantner
Xiao-Gang Wen
+ PDF Chat Topological order following a quantum quench 2009 Dimitris I. Tsomokos
Alioscia Hamma
Wen Zhang
Stephan Haas
Rosario Fazio
+ PDF Chat Lieb-Robinson Bounds and the Generation of Correlations and Topological Quantum Order 2006 Sergey Bravyi
M. B. Hastings
Frank Verstraete
+ PDF Chat Mutual Chern-Simons theory for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mi>Z</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>topological order 2008 Su-Peng Kou
Michael Levin
Xiao-Gang Wen