<i> L <sup>p</sup> </i> estimates for the bilinear Hilbert transform

Type: Article

Publication Date: 1997-01-07

Citations: 37

DOI: https://doi.org/10.1073/pnas.94.1.33

Abstract

For the bilinear Hilbert transform given by: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathit{H\hspace{.167em}fg}}({\mathit{x}}){\mathrm{\hspace{.167em}=\hspace{.167em}p.v.}}{\int }{\mathit{f}}({\mathit{x\hspace{.167em}-\hspace{.167em}y}}){\mathit{g}}({\mathit{x\hspace{.167em}+\hspace{.167em}y}}){\mathrm{\hspace{.167em}}}\frac{{\mathit{dy}}}{{\mathit{y}}}{\mathrm{,}}\end{equation*}\end{document} we announce the inequality ∥ H fg ∥ p 3 ≤ K p 1 , p 2 ∥ f ∥ p 1 ∥ g ∥ p 2 , provided 2 &lt; p 1 , p 2 &lt; ∞, 1/ p 3 = 1/ p 1 + 1/ p 2 and 1 &lt; p 3 &lt; 2.

Locations

  • Proceedings of the National Academy of Sciences - View
  • PubMed Central - View
  • Europe PMC (PubMed Central) - View - PDF
  • PubMed - View

Similar Works

Action Title Year Authors
+ PDF Chat Uniform Bounds for the Bilinear Hilbert Transforms, II 2006 Xiaochun Li
+ $L^{p}$ estimates for the bilinear Hilbert transform for $1/2 2014 Wei Dai
Guozhen Lu
+ L p Estimates on the Bilinear Hilbert Transform for 2 &lt; p &lt; &amp;#8734 1997 Michael T. Lacey
Christoph Thiele
+ $L^{p}$ estimates for the bilinear Hilbert transform for $1/2<p\leq2/3$: A counterexample and generalizations to non-smooth symbols 2014 Wei Dai
Guozhen Lu
+ The bilinear Hilbert transform 2013 Camil Muscalu
Wilhelm Schlag
+ PDF Chat <i>L</i><sup><i>p</i></sup>estimates for bilinear and multiparameter Hilbert transforms 2015 Wei Dai
Guozhen Lu
+ PDF Chat Uniform bounds for the bilinear Hilbert transforms, I 2004 Loukas Grafakos
Xiaochun Li
+ On the bilinear Hilbert transform 1998 Michael T. Lacey
+ Bilinear Hilbert Transforms and (Sub)Bilinear Maximal Functions along Convex Curves 2020 Junfeng Li
Haixia Yu
+ PDF Chat Bilinear Hilbert transforms and (sub)bilinear maximal functions along convex curves 2021 Junfeng Li
Haixia Yu
+ Endpoint bounds for the bilinear Hilbert transform 2015 Francesco Di Plinio
Christoph Thiele
+ On bilinear Hilbert transform along two polynomials 2017 Dong Dong
+ PDF Chat Criterion on<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:msup><mml:mo>×</mml:mo><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:msup><mml:mo>→</mml:mo><mml:msup><mml:mrow><mml:… 2014 Zuoshunhua Shi
Dunyan Yan
+ Distributional estimates for the bilinear Hilbert transform 2006 Dmitriy Bilyk
Loukas Grafakos
+ Endpoint bounds for the bilinear Hilbert transform 2014 Francesco Di Plinio
Christoph Thiele
+ Endpoint bounds for the bilinear Hilbert transform 2014 Francesco Di Plinio
Christoph Thiele
+ PDF Chat The bilinear Hilbert transform is pointwise finite 1997 Michael T. Lacey
+ BILINEAR FORMS BOUNDED IN SPACE [<i>p, q</i>] 1934 G. H. Hardy
J. E. Littlewood
+ L p estimates for bi-parameter and bilinear Fourier integral operators 2016 Qing Hong
Lu Zhang
+ Inversion Theorem for Bilinear Hilbert Transform 2007 Aneta Bučkovska
Stevan Pilipović
Mirjana Vuković